首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-disrupted pieces of primary human lung tumor implanted into NOD-scid IL2Rgamma(null) mice consistently result in successful xenografts in which tissue architecture, including tumor-associated leukocytes, stromal fibroblasts, and tumor cells are preserved for prolonged periods with limited host-vs-graft interference. Human CD45(+) tumor-associated leukocytes within the xenograft are predominantly CD3(+) T cells with fewer CD138(+) plasma cells. The effector memory T cells that had been shown to be quiescent in human lung tumor microenvironments can be activated in situ as determined by the production of human IFN-gamma in response to exogenous IL-12. Plasma cells remain functional as evidenced by production of human Ig. Significant levels of human IFN-gamma and Ig were detected in sera from xenograft-bearing mice for up to 9 wk postengraftment. Tumor-associated T cells were found to migrate from the microenvironment of the xenograft to the lung, liver, and primarily the spleen. At 8 wk postengraftment, a significant portion of cells isolated from the mouse spleens were found to be human CD45(+) cells. The majority of CD45(+) cells were CD3(+) and expressed a phenotype consistent with an effector memory T cell, consisting of CD4(+) or CD8(+) T cells that were CD45RO(+), CD44(+), CD62L(-), and CD25(-). Following adoptive transfer into non-tumor bearing NOD-scid IL2Rgamma(null) mice, these human T cells were found to expand in the spleen, produce IFN-gamma, and maintain an effector memory phenotype. We conclude that the NOD-scid IL2Rgamma(null) tumor xenograft model provides an opportunity to study tumor and tumor-stromal cell interactions in situ for prolonged periods.  相似文献   

2.
Human PBMC engraft in mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation (Hu-PBL-scid mice). Hu-PBL-NOD-scid mice generate 5- to 10-fold higher levels of human cells than do Hu-PBL-C.B-17-scid mice, and Hu-PBL-NOD-scid beta2-microglobulin-null (NOD-scid-B2mnull) mice support even higher levels of engraftment, particularly CD4+ T cells. The basis for increased engraftment of human PBMC and the functional capabilities of these cells in NOD-scid and NOD-scid-B2mnull mice are unknown. We now report that human cell proliferation in NOD-scid mice increased after in vivo depletion of NK cells. Human cell engraftment depended on CD4+ cells and required CD40-CD154 interaction, but engrafted CD4+ cells rapidly became nonresponsive to anti-CD3 Ab stimulation. Depletion of human CD8+ cells led to increased human CD4+ and CD20+ cell engraftment and increased levels of human Ig. We further document that Hu-PBL-NOD-scid mice are resistant to development of human EBV-related lymphoproliferative disorders. These disorders, however, develop rapidly following depletion of human CD8+ cells and are prevented by re-engraftment of CD8+ T cells. These data demonstrate that 1) murine NK cells regulate human cell engraftment in scid recipients; 2) human CD4+ cells are required for human CD8+ cell engraftment; and 3) once engrafted, human CD8+ cells regulate human CD4+ and CD20+ cell expansion, Ig levels, and outgrowth of EBV-related lymphoproliferative disorders. We propose that the Hu-PBL-NOD-scid model is suitable for the in vivo analysis of immunoregulatory interactions between human CD4+ and CD8+ cells.  相似文献   

3.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation, we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells, cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid, B-lymphoid, and erythroid lineages, but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization, which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.  相似文献   

4.
The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.  相似文献   

5.
Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2(-/-)γc(-/-), NOD/SCID, NOD/SCIDγc(-/-) and NOD/SCIDβ2m(-/-) strains. Transplantation of these mice with CD34(+) human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1(-/-)γ(-/-) strain for engraftment by human fetal liver derived CD34(+) hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2(-/-)γc(-/-) mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1(-/-)γc(-/-) mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting.  相似文献   

6.
The role that NK cells play in the rejection of hemopoietic stem cell (HSC) and tolerance induction has remained controversial. In this study, we examined whether NK cells play a direct role in the rejection of HSC. Purified HSC from MHC class II-deficient mice engrafted readily in congenic mice, while HSC from class I-deficient donors (beta(2)-microglobulin(-/-) (beta(2)m(-/-))) failed to engraft. Recipient mice lacking CD8(+), CD4(+), or T cells also rejected HSC from class I-deficient donors, pointing directly to NK cells as the effector in rejection of HSC. Recipients, deficient in or depleted of NK cells, engrafted readily with beta(2)m(-/-) HSC. Expression of the activating Ly-49D and inhibitory Ly-49G2 receptors on recipient NK cells was significantly decreased in these beta(2)m(-/-)-->B6 chimeras, and the proportion of donor NK cells expressing Ly-49D was also significantly decreased. Notably, beta(2)m(-/-) chimeras accepted beta(2)m(-/-) HSC in second transplants, demonstrating that NK cells in the chimeras had been tolerized to beta(2)m(-/-). Taken together, our data demonstrate that NK cells play a direct role in the regulation of HSC engraftment, and down-regulation and/or deletion of specific NK subsets in mixed chimeras can contribute to the induction of NK cell tolerance in vivo. Moreover, our data show that bone marrow-derived elements significantly contribute to NK cell development and tolerance.  相似文献   

7.
Hematopoietic stem cells (HSCs) are used in transplantation therapy to reconstitute the hematopoietic system. Human cord blood (hCB) transplantation has emerged as an attractive alternative treatment option when traditional HSC sources are unavailable; however, the absolute number of hCB HSCs transplanted is significantly lower than bone marrow or mobilized peripheral blood stem cells (MPBSCs). We previously demonstrated that dimethyl-prostaglandin E2 (dmPGE2) increased HSCs in vertebrate models. Here, we describe preclinical analyses of the therapeutic potential of dmPGE2 treatment by using human and nonhuman primate HSCs. dmPGE2 significantly increased total human hematopoietic colony formation in?vitro and enhanced engraftment of unfractionated and CD34(+) hCB after xenotransplantation. In nonhuman primate autologous transplantation, dmPGE2-treated CD34(+) MPBSCs showed stable multilineage engraftment over 1 year postinfusion. Together, our analyses indicated that dmPGE2 mediates conserved responses in HSCs from human and nonhuman primates and provided sufficient preclinical information to support proceeding to an FDA-approved phase 1 clinical trial.  相似文献   

8.
Small animal models with the capacity to support engraftment of a functional human immune system are needed to facilitate studies of human alloimmunity. In the present investigation, non-obese diabetic (NOD) severe combined immunodeficient (scid) beta2-microglobulin-null (B2mnull) mice engrafted with human peripheral blood lymphocytes (hu-PBL-NOD-scid B2mnull mice) were used as in vivo models for studying human skin allograft rejection. Hu-PBL-NOD-scid B2mnull mice were established by injection of human spleen cells or PBLs and transplanted with full-thickness allogeneic human skin. Human cell engraftment was enhanced by injection of anti-mouse CD122 antibody. The respective contributions of human CD4+ and CD8+ cells in allograft rejection were determined using depleting antibodies. Human skin grafts on unmanipulated NOD-scid B2mnull mice uniformly survived but on chimeric hu-PBL-NOD-scid B2mnull mice exhibited severe immune-mediated injury that often progressed to complete rejection. The alloaggressive hu-PBLs did not require prior in vitro sensitization to elicit targeted effector cell activity. Extensive mononuclear cell infiltration directed towards human-origin endothelium was associated with thrombosis and fibrin necrosis. No evidence of graft-versus-host disease was detected. Either CD4+ or CD8+ T cells may mediate injury and alloimmune rejection of human skin grafts on hu-PBL-NOD-scid B2mnull mice. It is proposed that Hu-PBL-NOD-scid B2mnull mice engrafted with human skin will provide a useful model for analysis of interventions designed to modulate human allograft rejection.  相似文献   

9.
An experimental model for human T lymphocyte development from hemopoietic stem cells is necessary to study the complex processes of T cell differentiation in vivo. In this study, we report a newly developed nonobese diabetic (NOD)/Shi-scid, IL-2Rgamma null (NOD/SCID/gamma(c)(null)) mouse model for human T lymphopoiesis. When these mice were transplanted with human cord blood CD34(+) cells, the mice reproductively developed human T cells in their thymus and migrated into peripheral lymphoid organs. Furthermore, these T cells bear polyclonal TCR-alphabeta, and respond not only to mitogenic stimuli, such as PHA and IL-2, but to allogenic human cells. These results indicate that functional human T lymphocytes can be reconstituted from CD34(+) cells in NOD/SCID/gamma(c)(null) mice. This newly developed mouse model is expected to become a useful tool for the analysis of human T lymphopoiesis and immune response, and an animal model for studying T lymphotropic viral infections, such as HIV.  相似文献   

10.
Chitteti BR  Liu Y  Srour EF 《PloS one》2011,6(3):e17498
It is well established that in adults, long-term repopulating hematopoietic stem cells (HSC) are mitotically quiescent cells that reside in specialized bone marrow (BM) niches that maintain the dormancy of HSC. Our laboratory demonstrated that the engraftment potential of human HSC (CD34(+) cells) from BM and mobilized peripheral blood (MPB) is restricted to cells in the G0 phase of cell cycle but that in the case of umbilical cord blood (UCB) -derived CD34(+) cells, cell cycle status is not a determining factor in the ability of these cells to engraft and sustain hematopoiesis. We used this distinct in vivo behavior of CD34(+) cells from these tissues to identify genes associated with the engraftment potential of human HSC. CD34(+) cells from BM, MPB, and UCB were fractionated into G0 and G1 phases of cell cycle and subjected in parallel to microarray and proteomic analyses. A total of 484 target genes were identified to be associated with engraftment potential of HSC. System biology modeling indicated that the top four signaling pathways associated with these genes are Integrin signaling, p53 signaling, cytotoxic T lymphocyte-mediated apoptosis, and Myc mediated apoptosis signaling. Our data suggest that a continuum of functions of hematopoietic cells directly associated with cell cycle progression may play a major role in governing the engraftment potential of stem cells. While proteomic analysis identified a total of 646 proteins in analyzed samples, a very limited overlap between genomic and proteomic data was observed. These data provide a new insight into the genetic control of engraftment of human HSC from distinct tissues and suggest that mitotic quiescence may not be the requisite characteristic of engrafting stem cells, but instead may be the physiologic status conducive to the expression of genetic elements favoring engraftment.  相似文献   

11.
Development of a small animal model for the in vivo study of human immunity and infectious disease remains an important goal, particularly for investigations of HIV vaccine development. NOD/Lt mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation readily support engraftment with high levels of human hematolymphoid cells. However, NOD/LtSz-scid mice are highly radiosensitive, have short life spans, and a small number develop functional lymphocytes with age. To overcome these limitations, we have backcrossed the null allele of the recombination-activating gene (Rag1) for 10 generations onto the NOD/LtSz strain background. Mice deficient in RAG1 activity are unable to initiate V(D)J recombination in Ig and TCR genes and lack functional T and B lymphocytes. NOD/LtSz-Rag1null mice have an increased mean life span compared with NOD/LtSz-scid mice due to a later onset of lymphoma development, are radioresistant, and lack serum Ig throughout life. NOD/LtSz-Rag1null mice were devoid of mature T or B cells. Cytotoxic assays demonstrated low NK cell activity. NOD/LtSz-Rag1null mice supported high levels of engraftment with human lymphoid cells and human hemopoietic stem cells. The engrafted human T cells were readily infected with HIV. Finally, NOD/LtSz-Rag1null recipients of adoptively transferred spleen cells from diabetic NOD/Lt+/+ mice rapidly developed diabetes. These data demonstrate the advantages of NOD/LtSz-Rag1null mice as a radiation and lymphoma-resistant model for long-term analyses of engrafted human hematolymphoid cells or diabetogenic NOD lymphoid cells.  相似文献   

12.
Historically, conditioning for engraftment of hematopoietic stem cells has been nonspecific. In the present study, we characterized which cells in the recipient hematopoietic microenvironment prevent allogeneic marrow engraftment. Mice defective in production of alphabeta-TCR(+), gammadelta-TCR(+), alphabeta- plus gammadelta-TCR(+), CD8(+), or CD4(+) cells were transplanted with MHC-disparate allogeneic bone marrow. Conditioning with 500 cGy total body irradiation (TBI) plus a single dose of cyclophosphamide (CyP) on day +2 establishes chimerism in normal recipients. When mice were conditioned with 300 cGy TBI plus a single dose of CyP on day +2, all engrafted, except wild-type controls and those defective in production of CD4(+) T cells. Mice lacking both alphabeta- and gammadelta-TCR(+) cells engrafted without conditioning, suggesting that both alphabeta- and gammadelta-TCR T cells in the host play critical and nonredundant roles in preventing engraftment of allogeneic bone marrow. CD8 knockout (KO) mice engrafted without TBI, but only if they received CyP on day +2 relative to the marrow infusion, showing that a CD8(-) cell was targeted by the CyP conditioning. The CD8(+) cell effector function is mechanistically different from that for conventional T cells, and independent of CD4(+) T helper cells because CD4 KO mice require substantially higher levels of conditioning than the other KO phenotypes. These results suggest that a number of cell populations with different mechanisms of action mediate resistance to engraftment of allogeneic marrow. Targeting of specific recipient cellular populations may permit conditioning approaches to allow mixed chimerism with minimal morbidity and could potentially avoid the requirement for myelotoxic agents altogether.  相似文献   

13.
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation.  相似文献   

14.
Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγ(null) strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases.  相似文献   

15.
CD4(+) alpha beta T cells from either normal C57BL/6 (B6) or MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice engrafted into congenic immunodeficient RAG1(-/-) B6 hosts induced an aggressive inflammatory bowel disease (IBD). Furthermore, CD4(+) T cells from CD1d(-/-) knockout (KO) B6 donor mice but not those from MHC-I(-/-) (homozygous transgenic mice deficient for beta(2)-microglobulin) KO B6 mice induced a colitis in RAG(-/-) hosts. Abundant numbers of in vivo activated (CD69(high)CD44(high)CD28(high)) NK1(+) and NK1(-) CD4(+) T cells were isolated from the inflamed colonic lamina propria (cLP) of transplanted mice with IBD that produced large amounts of TNF-alpha and IFN-gamma but low amounts of IL-4 and IL-10. IBD-associated cLP Th1 CD4(+) T cell populations were polyclonal and MHC-II-restricted when derived from normal B6 donor mice, but oligoclonal and apparently MHC-I-restricted when derived from MHC-II-deficient (A alpha(-/-) or A beta(-/-)) B6 donor mice. cLP CD4(+) T cell populations from homozygous transgenic mice deficient for beta(2)-microglobulin KO B6 donor mice engrafted into RAG(-/-) hosts were Th2 and MHC-II restricted. These data indicate that MHC-II-dependent as well as MHC-II-independent CD4(+) T cells can induce a severe and lethal IBD in congenic, immunodeficient hosts, but that the former need the latter to express its IBD-inducing potential.  相似文献   

16.
HIV infection is known to cause changes in phenotype and function of natural killer (NK) cells. The aim of this study was to characterize the NK cells mobilized from peripheral reservoirs in human immunodeficiency virus (HIV)-infected patients and controls. Seventeen HIV-infected patients and eight age- and sex-matched controls received a 1-h epinephrine infusion. Epinephrine induced mobilization of high numbers of NK-like T cells with no difference between HIV-infected patients and controls. Interestingly, all subjects mobilized NK cells containing increased proportions of perforin, in particular the CD3(-)CD16(+)CD56(+) NK cell subset. The HIV-infected patients mobilized CD3(-)CD16(-)CD56(+) and CD3(-)CD16(+)CD56(+) NK cells to a lesser extent than did controls. In contrast, the HIV-infected patients mobilized relatively more CD3(-)CD16(+)CD56(-) NK cells independent of antiretroviral treatment. It is suggested that these cells represent an immature NK cell subpopulation possibly resulting from an impaired cytokine tissue environment in HIV-infected patients.  相似文献   

17.
In vivo studies concerning the function of human hematopoietic stem cells (HSC) are limited by relatively low levels of engraftment and the failure of the engrafted HSC preparations to differentiate into functional immune cells after systemic application. In the present paper we describe the effect of intrahepatically transplanted CD34+ cells from cord blood into the liver of newborn or adult NOD/SCID mice on organ engraftment and differentiation.Analyzing the short and long term time dependency of human cell recruitment into mouse organs after cell transplantation in the liver of newborn and adult NOD/SCID mice by RT-PCR and FACS analysis, a significantly high engraftment was found after transplantation into liver of newborn NOD/SCID mice compared to adult mice, with the highest level of 35% human cells in bone marrow and 4.9% human cells in spleen at day 70. These human cells showed CD19 B-cell, CD34 and CD38 hematopoietic and CD33 myeloid cell differentiation, but lacked any T-cell differentiation. HSC transplantation into liver of adult NOD/SCID mice resulted in minor recruitment of human cells from mouse liver to other mouse organs. The results indicate the usefulness of the intrahepatic application route into the liver of newborn NOD/SCID mice for the investigation of hematopoietic differentiation potential of CD34+ cord blood stem cell preparations.  相似文献   

18.
Although engraftment following in utero stem cell transplantation can readily be achieved, a major limitation is the low level of donor chimerism. We hypothesized that a lack of space for donor cells in the recipient marrow was one of the primary reasons for failure to achieve significant engraftment, and that donor T cells could make space in an allogeneic mismatched setting. We found that 3 x 10(5) C57BL/6 (B6) naive CD3(+) cells coinjected with B6 T cell-depleted bone marrow (TCDBM) into 14- to 15-day-old BALB/c fetuses resulted in multilineage engraftment (median, 68.3%) associated with severe graft-vs-host disease (GvHD; 62 vs 0% with TCDBM alone). When 1.5 x 10(5) CD4(+) or CD8(+) cells were used, low levels of engraftment were seen vs recipients of 1.5 x 10(5) CD3(+) cells (2.4 +/- 1.1 and 6.6 +/- 3.9 vs 20.4 +/- 10.4%, respectively). To test the hypothesis that proliferation of T cells in response to alloantigen resulted in GvHD and increased engraftment, we pretreated naive T cells with photochemical therapy (PCT) using S-59 psoralen and UVA light to prevent proliferation. GvHD was reduced (60-0%), but was also associated with a significant reduction in engrafted donor cells (53.4 +/- 4.2 to 1.7 +/- 0.5%). However, when B6 T cells were sensitized to BALB/c splenocytes, treated with PCT, and coinjected with TCDBM, there was a partial restoration of engraftment (13.3 +/- 2.4% H2Kb(+) cells) with only one of nine animals developing mild to moderate GvHD. In this study we have shown that PCT-treated T cells that are cytotoxic but nonproliferative can provide an engraftment advantage to donor cells, presumably by destroying host hemopoietic cells without causing GvHD.  相似文献   

19.
The host-parasite interactions of Brugia malayi in mice are complex and multifactorial. In order to study the role of T cells in early B. malayi development, we infected TCRalpha(null) mice, which retain a population of CD4+ TCRbeta+ cells and TCRbeta(null) mice, which lack all TCRalphabeta(+) T cells. TCRalpha(null) mice were permissive to L4 larval and adult worm development but TCRbeta(null) mice were not. Depletion of the CD4(+) T cells in the former abrogated the permissive phenotype. It appears that the CD4(+) TCRbeta(+) T cells that have been described in TCRalpha(null) mice may facilitate early B. malayi development. These data are similar to our earlier demonstration of the role of NK cells in facilitating worm growth in SCID mice.  相似文献   

20.
Vasoactive intestinal peptide (VIP) induces regulatory dendritic cells (DC) in vitro that inhibit cellular immune responses. We tested the role of physiological levels of VIP on immune responses to murine CMV (mCMV) using VIP-knockout (VIP-KO) mice and radiation chimeras engrafted with syngenic VIP-KO hematopoietic cells. VIP-KO mice had less weight loss and better survival following mCMV infection compared with wild-type (WT) littermates. mCMV-infected VIP-KO mice had lower viral loads, faster clearance of virus, with increased numbers of IFN-γ(+) NK and NKT cells, and enhanced cytolytic activity of NK cells. Adaptive antiviral cellular immunity was increased in mCMV-infected VIP-KO mice compared with WT mice, with more Th1/Tc1-polarized T cells, fewer IL-10(+) T cells, and more mCMV-M45 epitope peptide MHC class I tetramer(+) CD8(+) T cells (tetramer(+) CD8 T cells). mCMV-immune VIP-KO mice had enhanced ability to clear mCMV peptide-pulsed target cells in vivo. Enhanced antiviral immunity was also seen in WT transplant recipients engrafted with VIP-KO hematopoietic cells, indicating that VIP synthesized by neuronal cells did not suppress immune responses. Following mCMV infection there was a marked upregulation of MHC-II and CD80 costimulatory molecule expression on DC from VIP-KO mice compared with DC from WT mice, whereas programmed death-1 and programmed death ligand-1 expression were upregulated in activated CD8(+) T cells and DC, respectively, in WT mice, but not in VIP-KO mice. Because the absence of VIP in immune cells increased innate and adaptive antiviral immunity by altering costimulatory and coinhibitory pathways, selective targeting of VIP signaling represents an attractive therapeutic target to enhance antiviral immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号