首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chen YM  Huang DH  Lin SF  Lin CY  Key JL 《Plant physiology》1983,73(3):746-753
Nucleoli from auxin-treated tissues (Glycine max L. var Wayne or Kaoshiung No. 3) were isolated and purified by Percoll density gradient centrifugation. There was a 2.1-fold increase in RNA and a 2.8-fold increase in protein after a 24-h auxin treatment per unit nucleolar DNA. More than 150 acid-soluble protein spots were associated with the auxin-treated nucleoli on two dimensional (2-D) gel electropherograms.

Nucleoli from auxin-treated tissue were fractionated by suspension in 20 millimolar dithiothreitol at room temperature for 20 minutes into two distinct fractions referred to as the nucleolar chromatin and preribosomal particle fractions. The DNA:RNA:protein ratio of the chromatin fraction was 1:2.5:14. Most of RNA polymerase 1 activity and nucleolar DNA recovered in this fraction. The acid-soluble proteins in the chromatin were resolved into 32 protein spots on 2-D gel electropherogram. The most abundant spots were identified as histones.

The nucleolar preribosomal particle fraction had a DNA:RNA:protein ratio of 1:24:102 and contained only trace amounts of RNA polymerase 1 activity and only 10 per cent of the nucleolar DNA. Acid-soluble proteins associated with these particles were resolved into 78 protein spots; 72 of these (acid-soluble) protein spots corresponded in 2-D gel electrophoresis to 80S cytoplasmic ribosomal proteins. Some 15 protein spots found in 80S ribosomal proteins were absent in the preribosomal particles. It seems reasonable, based on these data, that the enlargement of nucleoli after auxin treatment is primarily due to the large increase in ribosomal proteins and rRNA which accumulate and assemble in the nucleoli in the form of preribosomal particles.

  相似文献   

3.
Reduction in the number of nucleoli/nucleus and increase in their size were usually observed in rat liver after partial hepatectomy. These changes of nucleoli were greatest 16–18 h after the operation, when RNA biosynthesis in the nucleoli is reported to be highest. Approx. 50% of the nuclei had one enlarged nucleolus at this time but after the increase in nuclear DNA synthesis less than 15% of the nuclei had one nucleolus, as in normal liver. Before the next peak of nuclear DNA synthesis, nucleolar changes appeared again, though less conspicuously.The enlarged nucleoli of regenerating liver were separated from smaller ones by discontinuous sucrose gradient centrifugation and the contents of nucleic acid and ribosomal cistrons in different-sized nucleoli were measured. The large nucleoli in regenerating liver were found to have increased DNA content, whereas smaller ones had the normal content. The total number of ribosomal cistrons in the enlarged nucleoli from regenerating liver was also increased roughly in proportion to the DNA content. No significant difference was found between the percentages of ribosomal cistrons in whole nuclear DNAs from regenerating and normal liver. Small but reproducible [3H]TdR incorporation into nucleolar DNA was observed and this was similar in normal liver and regenerating liver 12 h after partial hepatectomy. Therefore, the nucleolar changes in regenerating liver were not accompanied by any particular DNA synthesis in the nucleolus itself. These results suggest that in the nuclei of regenerating liver nucleolar chromatins may be redistributed and assembled into large nucleoli, rather than that any amplification of ribosomal cistrons occurs.  相似文献   

4.
A procedure was developed for isolation of variously sized nucleoli in order to study the mechanism of nucleolar formation from multiple nucleolar organizers and to compare the compositions of different-sized nucleoli from Ehrlich ascites tumor cells. Relatively small nucleoli and large nucleoli from Ehrlich ascites tumor cells were separated by centrifugation at 400 g for 5 min in a layer of 0.34 M sucrose over 0.88 M sucrose. Small nucleoli remained in the 0.34 M sucrose layer while the large nucleoli accumulated in the 0.88 M sucrose.Three fractions, provisionally named small, intermediate and large nucleoli, containing 0.33, 0.41 and 0.84 pg DNA/nucleolus, respectively, were separated. Unfractionated nucleoli contained 0.59 pg DNA/nucleolus. The RNA content also increased with the size of the nucleolus and no significant difference was observed in the RNA/DNA ratios in the three fractions. Large nucleoli incorporated more [3H]uridine and [32P]orthophosphate into RNA than did small nucleoli, but the base compositions of the RNAs extracted from the different-sized nucleoli were similar. No significant fragmentation occurred on sonication of large nucleoli for 3 min, so the observed difference in the DNA contents was not due to mechanical damage of the nucleoli.The DNAs of these different-sized nucleoli were analysed on CsCl gradients. The nucleoli contained similar percentages of satellite DNA (20–22%) which were also similar to those of total, unfractionated nucleoli. Approx. 10% of the extranucleolar DNA is satellite DNA—thus the nucleolar fractions were probably not appreciably contaminated with extranucleolar DNA. The DNA of small nucleoli contained a slightly lower percentage (0.058%) of ribosomal cistrons than large nucleoli (0.081%). This means that the higher content of DNA in the large nucleoli is not merely due to longer sized chromatin with extra regions of the vicinity of nucleolar organizers. Thus these results suggest that the total content of ribosomal cistrons/nucleolus is roughly proportional to the DNA content of the nucleoli, at least in Ehrlich ascites tumor cells. Namely, the number of ribosomal cistrons per nucleolus for small, intermediate and large nucleoli is 40, 60 and 130, respectively.  相似文献   

5.
Total protein was released from isolated HeLa cell nucleoli by guanidine hydrochloride, purified by cesium chloride density gradient centrifugation, and analyzed by two-dimensional polyacrylamide gel electrophoresis. Conditions of electrophoresis restricted attention to proteins that are positively charged at pH 8.6. Most of the major nucleolar protein spots co-electrophoresed with ribosomal proteins; the majority of ribosomal proteins from both the large and small ribosomal subunits were represented. Several proteins found in association with polysomes but not on ribosomal subunits and several proteins unique to the nucleolus were also identified in these nucleolar protein patterns. In order to determine whether the ribosomal proteins found in the nucleolus represented sizable pools of ribosomal proteins, or merely ribosomal proteins contained in the preribosomal particles, [35S]methionine-labeled nucleoli were mixed with [3H]methionine-labeled polysomes. From analysis of isotopic ratios in individual protein spots it was possible to determine the stoidchiometry of individual ribosomal proteins in the nucleolus relative to their complement on cytoplasmic ribosomes. All but a few proteins exhibited relative nucleolar stoichiometry values of approximately one, indicating that there are not significant pools of most ribosomal proteins in isolated nucleoli.  相似文献   

6.
The DNA from mustard (Sinapis alba L.) seedlings was examined by neutral CsCl and Ag+/Cs2SO4 density gradient centrifugation. Different satellite fractions were revealed by these two methods. The satellite fractions obtained from the Ag+/Cs2SO4 density gradient could not be generally correlated with satellite DNA fractions observed in CsCl. In CsCl density gradient centrifugation, a main band at density 1,695 g/cm3 and a heavy shoulder at density 1,703 g/cm3 are found. By preparative CsCl gradient centrifugation the heavy shoulder can be enriched but not completely separated from the main band DNA.—Gradient centrifugation by complexing the DNA with Ag+ rf. 0.25 to DNA phosphate reveals three distinct fractions which are further characterized: The heavy satelite DNA fraction revealed by Ag+/Cs2SO4 gradient centrifugation has the same density in a CsCl gradient and the same Tm value as the main band, but differs from main band DNA in the details of its melting profile and in its renaturation kinetics. The light Ag+/Cs2SO4 satellite DNA fraction had a higher melting temperature corresponding to a GC-rich base composition. Differences between these 3 fractions are observed in thermal denaturation and renaturation profiles, hybridization in situ with ribosomal RNA, and their response to restriction endonuclease digestion. The light satellite fraction from the Ag+/Cs2SO4 gradient, rich in ribosomal cistrons corresponds to the heavy shoulder DNA of neutral CsCl gradients which also is rich in ribosomal cistrons. The heavy satellite fraction from Ag+/Cs2SO4 gradient which contains highly repetitive short nucleotide sequences could not be revealed by the classical CsCl gradient centrifugation technique.  相似文献   

7.
8.
PROTEIN SYNTHESIS BY ISOLATED PEA NUCLEOLI   总被引:9,自引:5,他引:4       下载免费PDF全文
A new method is described for the preparation of active, nucleus-free nucleoli and chromatin in relatively high purity and in sufficient quantities to permit biochemical and electron microscopic investigation. This method consists of disintegrating previously isolated nuclei by grinding with glass beads in an isotonic medium thus liberating structurally intact nucleoli and chromatin threads. Nucleoli and chromatin are then purified by differential centrifugation in Ficoll solutions. A study of the chemical composition, submicroscopic structure, and biological activity of the nucleolar preparation has been made. An equivalent study of the chromatin material has also been carried out in order to assess the significance of chromosomal contamination in nucleolar protein synthesis. The isolated nucleoli rapidly incorporate leucine-C14 into acid and base stable compounds in vitro. Such incorporation lasts for 20 minutes at 37°C and is enhanced by the addition of an energy-regenerating system and a complete amino acid mixture. It is independent of the nuclear Ph 5 enzymes. The bulk of the incorporated label is recovered in the residual, ribosome-like nucleolar protein fraction and a small percentage is found in the acid-extractable basic proteins. The rate of protein synthesis by isolated nucleoli is more rapid than that occurring in the chromatin fraction. This is taken as an additional proof that the nucleolus is the principal site of protein synthesis in the interphase pea nucleus.  相似文献   

9.
Extrachromosomal nucleoli were isolated from log phase cells ofTetrahymena pyriformis (amicronucleate strain) in a highly purified state. Nucleoli located at the periphery of the macronucleus were detached from the nucleoplasmic mass of isolated macronuclei with agitation and separated from macronuclei by filtration through a Nuclepore membrane filter (pore size 5 m). The filtrate constitutes the crude nucleolar preparation, as judged by electron microscopy and DNA analysis. Further purification of the nucleoli was performed by isopycnic centrifugation of the filtrate in a Metrizamide density gradient. After this step, the purity of the nucleoli, as defined by rDNA content and measured by analytical CsCl centrifugation, was almost 100%. Electron microscopy of the purified nucleoli revealed structures that resemble those of in situ nucleoli. Undergraded 35S pre-rRNA, together with 26S and 17S rRNA, could be isolated from purified nucleoli. In vitro RNA synthetic activity was associated with isolated nucleoli. This activity is insensitive to low and high concentrations of -amanitin, indicating that the form I RNA polymerase is functioning.by M.F. TrendelenburgThis paper is dedicated to the late Dr. Yoshihiro Kato  相似文献   

10.
11.
A procedure for the isolation and purification of a specific hybrid between rat 28S and 18S ribosomal RNA's and nucleolar DNA is described. The method employed includes the following steps: 1) isolation of the nucleolar DNA, 2) hybridization of [14C]rRNA with the nucleolar DNA, and 3) isolation and purification of the rRNA-DNA hybrid complex by chromatography on hydroxylapatite and centrifugation in a CsCl density gradient. In the isolated hybrid complex the RNA:DNA ratio is close to 1:1, and the degree of enrichment of the DNA by the rRNA cistrons is about 1500 times. The hybrid obtained has a sedimentation constant on the order of 20S, is resistant to the action of pancreatic RNase and RNase T1 and sheep brain DNase, and is characterized by high thermostability. Acording to the physicochemical tests used, the rRNA-DNA hybrid complex is a double-stranded poly-nucleotide with an ordered secondary structure.  相似文献   

12.
Chloroplast ribosomal RNA genes in the chloroplast DNA of Euglena gracilis   总被引:4,自引:0,他引:4  
Euglena chloroplast DNA has a buoyant density in CsCI of 1.686. Shearing this DNA produces a satellite band at density 1.700. The satellite, easily lost during preparative CsCI gradient centrifugation of chloroplast DNA, contains the genes for chloroplast ribosomal RNA. Pure Euglena chloroplast DNA is shown to contain one set of ribosomal RNA genes for each 90 × 106 daltons of DNA.  相似文献   

13.
Co-isolated residual nuclear shells and residual nucleoli from membrane-depleted rat liver nuclei were spread according to Kleinschmidt's method. Comparison of the spread residual structures isolated from nuclear shells and spread pore complex-lamina isolated from nuclear envelopes showed that these residual structures are morphologically identical. Furthermore, our nuclear shell isolation procedure allowed visualization of DNA strands bound to a granular component of the lamina. The fragmentation of nuclear shells allowed us to obtain well-spread nucleolar remnants, in which we observed DNA strands anchored on a residual nucleolar network attached to the lamina. The different molecular features revealed by the spreading of residual nucleolar structures suggest that both non-transcribing nucleolar DNA and active ribosomal genes are linked to the nucleolar network. Although the exact nature of this network remains to be defined, the results of the present study strongly suggest that the DNA molecules of the chromosomes bearing ribosomal genes have many sites of attachment to a non-chromatin nucleolar network which can be referred to as a nucleolar skeletal complex.  相似文献   

14.
Plasma membrane vesicles from roots of barley (Hordeum vulgare L., var. Arivat) had an equilibrium density in sucrose of about 1.16 grams per cubic centimeter, but could not be purified satisfactorily with the procedure developed for roots of other plant species. The reported procedure involving differential centrifugation to remove mitochondria (peak density of 1.18 grams per cubic centimeter) and subsequent density gradient centrifugation to purify plasma membrane vesicles was modified to include a narrower differential centrifugation fraction (13,000 to 40,000g instead of 13,000 to 80,000g) and a narrower density range in the sucrose gradient (1.15 to 1.18 grams per cubic centimeter instead of 1.15 to 1.20 grams per cubic centimeter). The fraction obtained by the modified procedure was between 60 and 70% pure as determined by staining with the phosphotungstic acid-chromic acid procedure, which was judged to be reliable for identifying plasma membrane vesicles in subcellular fractions from barley roots. The plasma membrane fraction was enriched in K+-stimulated ATPase activity at pH 6.5. The presence of nonspecific ATP-hydrolyzing activity in the plasma membrane fraction made it difficult to determine if the ATPase had properties in common with those reported for cation absorption in barley roots.  相似文献   

15.
16.
We report here a simple procedure for the purification of the organelle DNA. Mitochondrial DNA from Sorghum and the chloroplast DNA from Populus and spinach were purified using this protocol. The method utilizes a quick centrifugation of the isolated organelle DNA through a two step CsCl density gradient for removal of small molecular weight nucleic acids which pose a major problem for getting clean restriction patterns. This method of purification can be adopted with any isolation procedure for organelle DNA.  相似文献   

17.
This paper describes the subfractionation of nuclei isolated from guinea pig liver by the procedure presented in the first article of the series (8). Centrifugation in a density gradient system of nuclear fractions disrupted by sonication permits the isolation of the following subfractions: (a) a nucleolar subfraction which consists mainly of nucleoli surrounded by a variable amount of nucleolus-associated chromatin and contaminated by chromatin blocks derived primarily from von Kupffer cell nuclei; (b) and (c), two nucleoplasmic subfractions (I and II) which consist mainly of chromatin threads in a coarser (I) or finer (II) degree of fragmentation. The protein, RNA, and DNA content of these subfractions was determined, and their RNA's characterized in terms of NaCl-solubility, nucleotide composition, and in vivo nucleotide turnover, using inorganic 32P as a marker. The results indicate that there are at least three types of RNA in the nucleus (one in the nucleolus and two in the nucleoplasm or chromatin), which differ from one another in NaCl-solubility, nucleotide composition, turnover, and possibly sequence. Possible relations among these RNA's and those of the cytoplasm are discussed.  相似文献   

18.
19.
Summary A salt-extraction procedure was used to isolate a nucleolar nonhistone protein fraction, containing [32P]phosphoserine, from the nucleoli of Novikoff hepatoma ascites cells. These proteins are similar in amino-acid composition to whole nuclear (chromosomal) nonhistone proteins. DNA-cellulose column chromatography showed that this fraction contains DNA-binding phosphoproteins, some of which will bind only to homologous (Novikoff) nucleolar or nuclear DNA.  相似文献   

20.
Sub-nuclear fractionation. I. Procedure and characterization of fractions   总被引:7,自引:0,他引:7  
A procedure for fractionation of nuclei from rat liver, Xenopus liver and Xenopus erythrocytes is described. It is based on mild sonication of isolated nuclei for 7–12 sec in a nearly isotonic medium, separation of nuclear sap and centrifugation on a discontinuous sucrose density gradient containing Na and K citrate. Nuclei are thus separated in a single operation into 8 fractions representing nucleoplasm, euchromatin, nucleoli, heterochromatin and nuclear membranes. The sub-nuclear fractions were characterized by chemical composition (DNA, protein, RNA and phospholipid), electron microscopy, thermal denaturation properties of chromatin, relative binding of 3H-actinomycin D, polyacrylamide gel electrophoresis of nuclear proteins and titration of membranes against Triton X-100. Approx. 10% of total DNA was recovered as heterochromatin associated with membranes but the bulk of nuclear membranes co-sedimented with the major euchromatin zones. Subnuclear fractions prepared in this way retain virtually all the RNA polymerase activity bound to chromatin [41].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号