首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The osmoregulated periplasmic glucans (OPGs) produced by Rhodobacter sphaeroides, a free-living organism, were isolated by trichloracetic acid treatment and gel permeation chromatography. Compounds obtained were characterized by compositional analysis, matrix-assisted laser desorption ionization mass spectrometry and nuclear magnetic resonance. R. sphaeroides predominantly synthesizes a cyclic glucan containing 18 glucose residues that can be substituted by one to seven succinyl esters residues at the C6 position of some of the glucose residues, and by one or two acetyl residues. The glucans were subjected to a mild alkaline treatment in order to remove the succinyl and acetyl substituents, analyzed by MALDI mass spectrometry and purified by high-performance anion-exchange chromatography. Methylation analysis revealed that this glucan is linked by 17 1,2 glycosidic bonds and one 1,6 glycosidic bond. Homonuclear and (1)H/(13)C heteronuclear NMR experiments revealed the presence of a single alpha-1,6 glycosidic linkage, whereas all other glucose residues are beta-1,2 linked. The different anomeric proton signals allowed a complete sequence-specific assignment of the glucan. The structural characteristics of this glucan are very similar to the previously described OPGs of Ralstonia solanacearum and Xanthomonas campestris, except for its different size and the presence of substituents. Therefore, similar OPGs are synthesized by phytopathogenic as well as free-living bacteria, suggesting these compounds are intrinsic components of the Gram-negative bacterial envelope.  相似文献   

2.
Brucella abortus cyclic glucan synthase (Cgs) is a 316-kDa (2,831-amino-acid) integral inner membrane protein that is responsible for the synthesis of cyclic beta-1,2-glucan by a novel mechanism in which the enzyme itself acts as a protein intermediate. B. abortus Cgs uses UDP-glucose as a sugar donor and has the three enzymatic activities necessary for synthesis of the cyclic polysaccharide (i.e., initiation, elongation, and cyclization). Cyclic glucan is required in B. abortus for effective host interaction and complete expression of virulence. To gain further insight into the structure and mechanism of action of B. abortus Cgs, we studied the membrane topology of the protein using a combination of in silico predictions, a genetic approach involving the construction of fusions between the cgs gene and the genes encoding alkaline phosphatase (phoA) and beta-galactosidase (lacZ), and site-directed chemical labeling of lysine residues. We found that B. abortus Cgs is a polytopic membrane protein with the amino and carboxyl termini located in the cytoplasm and with six transmembrane segments, transmembrane segments I (residues 419 to 441), II (residues 452 to 474), III (residues 819 to 841), IV (residues 847 to 869), V (residues 939 to 961), and VI (residues 968 to 990). The six transmembrane segments determine four large cytoplasmic domains and three very small periplasmic regions.  相似文献   

3.
Brucella abortus cyclic glucan synthase (Cgs) is a 320-kDa (2868-amino acid) polytopic integral inner membrane protein responsible for the synthesis of the virulence factor cyclic beta-1,2-glucan by a novel mechanism in which the enzyme itself acts as a protein intermediate. Cgs functions as an inverting processive beta-1,2-autoglucosyltransferase and has the three enzymatic activities required for the synthesis of the cyclic glucan: initiation, elongation, and cyclization. To gain further insight into the protein domains that are essential for the enzymatic activity, we have compared the Cgs sequence with other glycosyltransferases (GTs). This procedure allowed us to identify in the Cgs region (475-818) the widely spaced D, DxD, E/D, (Q/R)xxRW motif that is highly conserved in the active site of numerous GTs. By site-directed mutagenesis and in vitro and in vivo activity assays, we have demonstrated that most of the amino acid residues of this motif are essential for Cgs activity. These sequence and site-directed mutagenesis analyses also indicate that Cgs should be considered a bi-functional modular GT, with an N-terminal GT domain belonging to a new GT family related to GT-2 (GT-84) followed by a GH-94 glycoside hydrolase C-terminal domain. Furthermore, over-expression of inactive mutants results in wild-type (WT) production of cyclic glucan when bacteria co-express the mutant and the WT form, indicating that Cgs may function in the membrane as a monomeric enzyme. Together, these results are compatible with a single addition model by which Cgs acts in the membrane as a monomer and uses the identified motif to form a single center for substrate binding and glycosyl-transfer reaction.  相似文献   

4.
5.
Functional chvA and chvB genes are required for attachment of Agrobacterium tumefaciens to plant cells, an early step in crown gall tumor formation. Strains defective in these loci do not secrete normal amounts of cyclic beta-1,2-glucan. Whereas chvB is required for beta-1,2-glucan synthesis, the role of chvA in glucan synthesis or export has not been clearly defined. We found that cultures of chvA mutants contained as much neutral beta-1,2-glucan in the cell pellets as did the wild type, with no detectable accumulation of glucan in the culture supernatant. The cytoplasm of chvA mutant cells contained over three times more soluble beta-1,2-glucan than did the cytoplasm of the wild-type parent. Unlike the wild type, chvA mutants contained no detectable periplasmic glucan. The amino acid sequence of chvA is highly homologous to the sequences of bacterial and eucaryotic export proteins, as observed previously in the case of ndvA, a rhizobial homolog of chvA. Strong sequence homology within this family of export proteins is concentrated in the carboxy-terminal portions of the proteins, but placement of consensus ATP-binding sites, internal signal sequences, and hydrophobic domains are conserved over their entire lengths. These data suggest a model for beta-1,2-glucan synthesis in A. tumefaciens in which glucan is synthesized inside the inner membrane with the participation of ChvB and transported across the inner membrane with the participation of ChvA.  相似文献   

6.
In a previous study (Miller, K.J., Kennedy, E.P. and Reinhold, V.N. (1986) Science 231, 48-51) it was reported that the biosynthesis of periplasmic cyclic beta-1,2-glucans by Agrobacterium tumefaciens is strictly osmoregulated in a pattern closely similar to that found for the membrane-derived oligosaccharides of Escherichia coli (Kennedy, E.P. (1982) Proc. Natl. Acad. Sci. USA 79, 1092-1095). In addition to the well-characterized neutral cyclic glucan, the periplasmic glucans were found to contain an anionic component not previously reported. Biosynthesis of the anionic component is osmotically regulated in a manner indistinguishable from that of the neutral cyclic beta-1,2-glucan. We now find that the anionic component consists of cyclic beta-1,2-glucans substituted with one or more sn-1-phosphoglycerol residues. The presence of sn-1-phosphoglycerol residues represents an additional, striking similarity to the membrane-derived oligosaccharides of E. coli.  相似文献   

7.
A novel cyclic beta-1,2-glucan mutant of Rhizobium meliloti.   总被引:1,自引:1,他引:0       下载免费PDF全文
The periplasmic cyclic beta-1,2-glucans produced by bacteria within the Rhizobiaceae family provide functions during hypo-osmotic adaptation and plant infection. In Rhizobium meliloti, these molecules are highly modified with phosphoglycerol and succinyl substituents, and it is possible that the anionic character of these glucans is important for their functions. In the present study, we have used a thin-layer chromatographic screening method to identify a novel R. meliloti mutant specifically blocked in its ability to transfer phosphoglycerol substituents to the cyclic beta-1,2-glucan backbone. Further analysis revealed that the cyclic glucans produced by this mutant contained elevated levels of succinyl substituents. As a result, the overall anionic charge on the cyclic beta-1,2-glucans was found to be similar to that of wild-type cells. Despite this difference in cyclic beta-1,2-glucan structure, the mutant was shown to effectively nodulate alfalfa and to grow as well as wild-type cells in hypo-osmotic media.  相似文献   

8.
The periplasmic cyclic beta-1,2-glucan of Agrobacterium tumefaciens is believed to maintain high osmolarity in the periplasm during growth of the bacteria on low-osmotic-strength media. Strains with mutations in the chvA or chvB gene do not accumulate beta-1,2-glucan in their periplasm and exhibit pleiotropic phenotypes, including inability to form crown gall tumors on plants. We examined the effects of medium osmolarity to determine whether some or all of these phenotypes result from suboptimal periplasmic osmolarity. The mutants grew more slowly than wild-type cells and exhibited altered periplasmic and cytoplasmic protein content when cultured in low-osmotic-strength media, but not when cultured in high-osmotic-strength media. These observations support a role for periplasmic glucan in osmoadaptation. However, the mutants were avirulent and exhibited reduced motility regardless of the osmolarity of the medium. Therefore, beta-1,2-glucan may play roles in virulence and motility that are unrelated to its role in osmoadaptation.  相似文献   

9.
The cyclic beta-(1,2)-glucans of Rhizobium meliloti and Agrobacterium tumefaciens play an important role during hypoosmotic adaptation, and the synthesis of these compounds is osmoregulated. Glucosyltransferase, the enzyme responsible for cyclic beta-(1,2)-glucan biosynthesis, is present constitutively, suggesting that osmotic regulation of the biosynthesis of these glucans occurs through modulation of enzyme activity. In this study, we examined regulation of cyclic glucan biosynthesis in vitro with membrane preparations from R. meliloti. The results show that ionic solutes inhibit glucan synthesis, even when they are present at low concentrations (e.g., 10 mM). In contrast, neutral solutes (glucose, sucrose, and the compatible solutes glycine betaine and trehalose) were found to stimulate glucan synthesis in vitro when they were present at high concentrations (e.g., 1 M). Furthermore, high concentrations of these neutral solutes were shown to compensate for the inhibition of glucosyltransferase activity by ionic solutes. Consistent with their ionic character, the compatible solute potassium glutamate and the osmoprotectant choline chloride inhibited glucosyltransferase activity in vitro. The results suggest that intracellular ion concentrations, intracellular osmolarity, and intracellular concentrations of nonionic compatible solutes all act as important determinants of glucosyltransferase activity in vivo. Additional experiments were performed with an ndvA mutant defective for transport of cyclic glucans and an ndvB mutant that produces a C-terminal truncated glucosyltransferase. Cyclic beta-(1,2)-glucan biosynthesis, although reduced, was found to be osmoregulated in both mutants. These results reveal that NdvA and the C terminus of NdvB are not required for osmotic regulation of cyclic beta-(1,2)-glucan biosynthesis.  相似文献   

10.
Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium-plant interactions, their precise roles are unclear. Here, we examined the role of cyclic beta-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic beta-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic beta-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic beta-(1,2)-glucan-induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant-pathogen coevolution and for the development of phytoprotection measures.  相似文献   

11.
We have examined some aspects of the mechanism of cyclic beta-1,2-glucan synthetase from Agrobacterium tumefaciens (235-kDa protein, gene product of the chvB region). The enzyme produces cyclic beta-1,2-glucans containing 17 to 23 glucose residues from UDP-glucose. In the presence of added cyclic beta-1,2-glucans (> 0.5 mg/ml) (containing 17 to 23 glucose residues), the enzyme instead synthesizes larger cyclic beta-1,2-glucans containing 24 to 30 glucose residues. This is achieved by de novo synthesis and not by disproportion reactions with the added product. This is interpreted as inhibition of the specific cyclization reaction for the synthesis of cyclic beta-1,2-glucans containing 17 to 23 glucose residues but with no concomitant effect on the elongation (polymerization) reaction. Temperature and detergents both affect the distribution of sizes of cyclic beta-1,2-glucans, but glucans containing 24 to 30 glucose residues are not produced. We suggest that the size distribution of cyclic beta-1,2-glucan products depends on competing elongation and cyclization reactions.  相似文献   

12.
The periplasmic cyclic beta-(1,2)-glucans of Rhizobium spp. are believed to provide functions during hypoosmotic adaptation and legume nodulation. In Rhizobium meliloti, cyclic beta-(1,2)-glucans are synthesized at highest levels when cells are grown at low osmolarity, and a considerable fraction (> or = 35%) of these glucans may become substituted with phosphoglycerol moieties. Thus far, two chromosomally encoded proteins, NdvA and NdvB, have been shown to function during cyclic beta-(1,2)-glucan biosynthesis; however, the precise roles for these proteins remain unclear. In the present study, we show that R. meliloti mutants lacking up to one-third of the downstream region of ndvB synthesize cyclic beta-(1,2)-glucans similar to those produced by wild-type cells with respect to size and phosphoglycerol substituent profile. In contrast, no phosphoglycerol substituents were detected on the cyclic beta-(1,2)-glucans synthesized by an R. meliloti ndvA mutant.  相似文献   

13.
The chvA gene product of Agrobacterium tumefaciens is required for virulence and attachment of bacteria to plant cells. Three chvA mutants were studied. In vivo, they were defective in the synthesis, accumulation, and secretion of beta-(1-2)glucan; however, the 235-kilodalton (kDa) protein known to be involved in the synthesis of beta-(1-2)glucan (A. Zorreguieta and R. Ugalde, J. Bacteriol. 167:947-951, 1986) was present and active in vitro. was present and active in vitro. Two molecular forms of cyclic beta-(1-2)glucan, designated types I and II, were resolved by gel chromatography. Type I beta-(1-2)glucan was substituted with nonglycosidic residues, and type II beta-(1-2)glucan was nonsubstituted. Wild-type cells accumulated type I beta-(1-2)glucan, and chvA mutant cells accumulated mainly type II beta-(1-2)glucan and a small amount of type I beta-(1-2)glucan. Inner membranes of wild-type and chvA mutants formed in vitro type II nonsubstituted beta-(1-2)glucan. A 75-kDa inner membrane protein is proposed to be the chvA gene product. chvA mutant inner membranes had increased levels of 235-kDa protein; partial trypsin digestion patterns suggested that the 235-kDa protein (the gene product of the chvB region) and the gene product of the chvA region form a complex in the inner membrane that is involved in the synthesis, secretion, and modification of beta-(1-2)glucan. All of the defects assigned to the chvA mutation were restored after complementation with plasmid pCD522 containing the entire chvA region.  相似文献   

14.
The cell-associated glucans produced by Burkholderia solanacearum and Xanthomonas campestris pv. citri were isolated by trichloroacetic acid treatment and gel permeation chromatography. The compounds obtained were characterized by compositional analysis, matrix-assisted laser desorption ionization mass spectrometry, and high-performance anion-exchange chromatography. B. solanacearum synthesizes only a neutral cyclic glucan containing 13 glucose residues, and X. campestris pv. citri synthesizes a neutral cyclic glucan containing 16 glucose residues. The two glucans were further purified by high-performance anion-exchange chromatography. Methylation analysis revealed that these glucans are linked by 1,2-glycosidic bonds and one 1,6-glycosidic bond. Our 600-MHz homonuclear and 1H-13C heteronuclear nuclear magnetic resonance experiments revealed the presence of a single alpha-1,6-glycosidic linkage, whereas all other glucose residues are beta-1,2 linked. The presence of this single alpha-1,6 linkage, however, induces such structural constraints in these cyclic glucans that all individual glucose residues could be distinguished. The different anomeric proton signals allowed complete sequence-specific assignment of both glucans. The structural characteristics of these glucans contrast with those of the previously described osmoregulated periplasmic glucans.  相似文献   

15.
The chvB operon of Agrobacterium tumefaciens is required for bacterial attachment to plant cells and for efficient crown gall tumor formation. As defined by the virulence phenotypes of mutants with transposon insertions mapping in the region, the operon was previously mapped to a 5-kilobase (kb) stretch of chromosomal DNA. We report here that the operon is actually about 8.5 kb long and that it contains a 7-kb gene coding for a large membrane protein involved in the synthesis of cyclic beta-1,2-glucan. Mutants with transposon insertions within the 5-kb phenotypically defined operon do not synthesize this functional protein, do not synthesize beta-1,2-glucan, and do not form tumors. However, mutants with insertions that map up to 3.5 kb downstream of the phenotypically defined operon synthesize truncated proteins that are active in beta-1,2-glucan synthesis. These mutants form tumors. The truncated proteins correspond closely in size with the map positions of the insertions, suggesting that the insertions truncate the proteins by translational termination. A plasmid that contains only the phenotypically defined chvB operon also codes for a truncated protein. A fusion product between the protein and beta-galactosidase carried on a Tn3-HoHo1 insertion was observed in one mutant. Partial trypsin digestion of wild-type inner membranes generated truncated proteins that were active in beta-1,2-glucan synthesis, demonstrating that a large portion of the protein is not required for beta-1,2-glucan synthesis. The correlation between beta-1,2-glucan synthesis by the truncated proteins and tumorigenesis strongly implicates the polysaccharide product of this protein in tumor formation.  相似文献   

16.
The synthesis of cyclic beta-(1,2)-glucans from UDP-[14C]glucose by a crude membrane preparation and whole cells of Rhizobium leguminosarum bv. trifolii TA-1 was investigated. The crude membrane system needed Mn2+, ATP, and NAD+ for optimal activity. Hardly any difference in biosynthetic activity between membrane fractions of TA-1 cells grown in the presence (200 mM) or absence of NaCl was observed. Whole TA-1 cells grown in the presence of NaCl excreted labeled, neutral cyclic beta-(1,2)-glucan during incubation with added UDP-[14C]glucose. With NaCl-free cultured TA-1 cells, no excretion was observed; however, after these cells were alternately frozen and thawed eight times, they excreted glucans. Glucan formation in vitro and glucan excretion by whole cells were strongly inhibited in the presence of 50 mg of cyclic glucan per ml (about 15 mM), indicating that biosynthesis of cyclic beta-(1,2)-glucans in strain TA-1 is controlled by end-product inhibition. These observations indicate that TA-1 cells become more permeable to cyclic glucans at high NaCl concentrations. The constant loss of glucans from cells grown in the presence of 200 mM NaCl prevented end-product inhibition and resulted in glucan accumulation of up to 1,600 mg/liter in the medium.  相似文献   

17.
At 25 degrees C, the optimal temperature for growth of Rhizobium trifolii TA-1, extracellular and capsular polysaccharide (EPS and CPS) were the main carbohydrate products synthesized in mannitol-rich medium (10 g of mannitol and 1 g of glutamic acid per liter). In the same medium at 33 degrees C, EPS and CPS production was inhibited, and up to 3.9 g of cyclic beta-(1,2)-glucan was produced during an incubation period of 20 days with a total biomass of 0.55 g of protein. In a medium containing 50 g of mannitol and 10 g of glutamic acid per liter, high cell densities (3.95 g of protein) were obtained at 25 degrees C. This biomass excreted 10.9 g of cyclic beta-(1,2)-glucan within 10 days. Concomitantly, 4.8 g of EPS were synthesized, while CPS production was strongly suppressed. The excreted cyclic beta-(1,2)-glucans were neutral and had degrees of polymerization ranging from 17 to 25, with a degree of polymerization of 19 as the major glucan cycle.  相似文献   

18.
At 25 degrees C, the optimal temperature for growth of Rhizobium trifolii TA-1, extracellular and capsular polysaccharide (EPS and CPS) were the main carbohydrate products synthesized in mannitol-rich medium (10 g of mannitol and 1 g of glutamic acid per liter). In the same medium at 33 degrees C, EPS and CPS production was inhibited, and up to 3.9 g of cyclic beta-(1,2)-glucan was produced during an incubation period of 20 days with a total biomass of 0.55 g of protein. In a medium containing 50 g of mannitol and 10 g of glutamic acid per liter, high cell densities (3.95 g of protein) were obtained at 25 degrees C. This biomass excreted 10.9 g of cyclic beta-(1,2)-glucan within 10 days. Concomitantly, 4.8 g of EPS were synthesized, while CPS production was strongly suppressed. The excreted cyclic beta-(1,2)-glucans were neutral and had degrees of polymerization ranging from 17 to 25, with a degree of polymerization of 19 as the major glucan cycle.  相似文献   

19.
The cyclic beta-1,2-glucans of Rhizobium may function during legume nodulation. These molecules may become highly substituted with phosphoglycerol moieties from the head group of phosphatidylglycerol; diglyceride is a by-product of this reaction (K. J. Miller, R. S. Gore, and A. J. Benesi, J. Bacteriol. 170:4569-4575, 1988). We recently reported that R. meliloti 1021 produces a diacylglycerol kinase (EC 2.7.1.107) activity that shares several properties with the diacylglycerol kinase enzyme of Escherichia coli (W. P. Hunt, R. S. Gore, K. J. Miller, Appl. Environ. Microbiol. 57:3645-3647, 1991). A primary function of this rhizobial enzyme is to recycle diglyceride generated during cyclic beta-1,2-glucan biosynthesis. In the present study, we report the cloning and initial characterization of a single-copy gene from R. meliloti 1021 that encodes a diacylglycerol kinase homolog; this homolog can complement a diacylglycerol kinase deficient strain of E. coli. The sequence of the rhizobial diacylglycerol kinase gene was predicted to encode a protein of 137 amino acids; this protein shares 32% identity with the E. coli enzyme. Analysis of hydropathy and the potential to form specific secondary structures indicated a common overall structure for the two enzymes. Because diglyceride metabolism and cyclic beta-1,2-glucan biosynthesis are metabolically linked, future studies with diacylglycerol kinase mutants of R. meliloti 1021 should further elucidate the roles of the cyclic beta-1,2-glucans in the Rhizobium-legume symbiosis.  相似文献   

20.
Cyclic beta-1,2-glucan is considered to play a role in osmoadaptation of members of the family Rhizobiaceae in hypotonic media. Agrobacterium tumefaciens chvB mutants, lacking beta-1,2-glucan, exhibit a pleiotropic phenotype, including nonmotility, attachment deficiency, and avirulence. Here we report that by growth of chvB mutant cells in tryptone-yeast extract medium supplemented with 7 mM CaCl2 and 100 mM NaCl, the mutant cells become motile, attach to pea root hair tips, and are virulent on Kalanchoë leaves. Moreover, whereas chvB mutants grown in tryptone-yeast extract medium containing 7 mM CaCl2 do not produce active rhicadhesin, addition of 100 mM NaCl to this medium resulted in restoration of rhicadhesin activity. The presence of CaCl2 appeared to be required for attachment, virulence, and activity of rhicadhesin. The results support a role for cyclic beta-1,2-glucan in osmoadaptation and strengthen the notion that rhicadhesin is required for attachment and virulence of A. tumefaciens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号