首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus) has high variability for fruit size, shape, rind pattern, and flesh color. This study was designed to measure the qualitative inheritance of rind phenotypes (solid dark green vs. light green). For each of the 2 families, "Mountain Hoosier" × "Minilee" and "Early Arizona" × "Minilee," 6 generations (P(a)S(1), P(b)S(1), F(1), F(2), BC(1)P(a), BC(1)P(b)) were developed. Each family was tested in summer 2008 in 3 environments in North Carolina. Phenotypic data were analyzed with the χ(2) method to test the segregation of Mendelian genes. Deviations from the expected segregation ratios based on hypothesized single dominant gene for solid dark green versus light green rind pattern were recorded, raising questions on the inheritance of this trait. Inheritance of solid dark green rind versus light (gray) rind showed duplicate dominant epistasis. Duplicate dominant epistasis gives rise to a 15:1 ratio (solid dark green:light rind pattern) in F(2) generation. When both the loci are homozygous recessive, we observe light rind pattern. The g-1 and g-2 genes were identified to control light green rind when in homozygous recessive form.  相似文献   

2.
We have been constructing linkage maps for watermelon ( Citrullus lanatus) on the basis of random amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), inter-simple sequence repeats (ISSRs) and isozymes using an F(2) population derived from a crossing between a cultivated inbred line (H-7; C. lanatus) and an African wild form (SA-1; C. lanatus). A total of 120 F(2) plants was used for construction of a linkage map using 477 RAPDs, 53 RFLPs, 23 ISSRs and one isozyme markers. Linkage analysis revealed that 554 loci could be mapped to 11 linkage groups that extended for 2,384 centimorgans (cM). While a BC(1) population [(H-7 x SA-1) x H-7] consisting of 60 individuals was grown and scored for quantitative traits. Another linkage map with a total length of 1,729 cM was constructed in the BC(1) using genetic markers found to segregate in the F(2) population. A QTL analysis was applied by means of interval mapping for locating such agronomic traits as hardness of rind, Brix of flesh juice, flesh color (red and yellow) and rind color. The relative order of markers in the BC(1) map was essentially the same as that on the linkage map in the F(2). A total of five QTLs for four agronomic traits was detected. The QTL for hardness of rind was mapped on group 4. The linkage group 8 contained the QTL for sugar content of the flesh as expressed in Brix of the juice. The QTL for red flesh color was detected on groups 2 and 8. The QTL for rind color mapped on the group 3. The present map and QTL analysis may provide a useful tool for breeders by introducing valuable wild watermelon genes to cultivars.  相似文献   

3.
Flesh color of watermelon is an agronomically important trait that is predominantly determined by a network of the carotenoid biosynthetic pathway, which also contributes to the nutritional value of the fruit through the health-promoting function of carotenoids. We have identified a key gene, lycopene β-cyclase (LCYB) that may determine canary yellow and red flesh color of watermelon and developed a zero-distance molecular marker that identifies a critical single nucleotide polymorphism (SNP) that distinguishes different alleles of the LCYB gene. Analysis of the flesh color inheritance in segregating populations indicated that a single gene determines the color difference between canary yellow and red flesh in watermelon. The sequence comparison of full-length cDNA of LCYB, which was isolated using degenerate PCR and RACE, identified three SNPs in the coding region of LCYB between canary yellow and red. These SNPs showed perfect co-segregation with flesh color phenotypes. One of the SNPs introduces an amino acid replacement of evolutionarily conserved Phe226 to Val, which may impair the catalytic function of LCYB. This SNP was used to develop a cleaved amplified polymorphic sequence (CAPS) marker, which perfectly cosegregated with flesh color phenotype. Our results strongly suggest that LCYB may be the genetic determinant for canary yellow or red flesh color and our CAPS marker will allow breeders to economically distinguish between canary yellow and red watermelon fruit color at the seedling stage.  相似文献   

4.
The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus)   总被引:2,自引:0,他引:2  
Genetic studies demonstrated three loci controlling coat colors in the Mongolian gerbil. F1 hybrids of white gerbils with red eyes and agouti gerbils with wild coat color had the agouti coat color. The segregating ratio of agouti and white in the F2 generation was 3:1. In the backcross (BC) generation (white x F1), the ratio of the agouti and white coat colors was 1:1. Next, inheritance of the agouti coat color was investigated. Matings between agouti and non-agouti (black) gerbils produced only agouti gerbils. In the F2 generation, the ratio of agouti to non-agouti (black) was 3:1. There was no distortion in the sex ratios within each coat color in the F1, F2 and BC generations. This indicated that the white coat color of gerbils is governed by an autosomal recessive gene which should be named the c allele of the c (albino) locus controlling pigmentation, and the agouti coat color is controlled by an autosomal dominant gene which might be named the A allele of the A (agouti) locus controlling pigmentation patterns in the hair. The occurrence of the black gerbil demonstrated clearly the existence of the b (brown) locus, and it clearly indicated that the coat colors of gerbils can basically be explained by a, b, and c loci as in mice and rats.  相似文献   

5.
Sweet cherry (Prunus avium L.) skin and fruit colors vary widely due to differences in red and yellow pigment profiles. The two major market classes of sweet cherry represent the two color extremes, i.e., yellow skin with red blush and yellow flesh and dark mahogany skin with mahogany flesh. Yet, within these extremes, there is a continuum of skin and flesh color types. The genetic control of skin and flesh color in sweet cherry was investigated using a quantitative trait locus (QTL) approach with progeny derived from a cross between cherry parents representing the two color extremes. Skin and flesh colors were measured using a qualitative color-card rating over three consecutive years and also evaluated quantitatively for darkness/lightness (L*), red/green (a*), and yellow/blue (b*). Segregations for the color measurements (card, L*, a*, and b*) did not fit normal distributions; instead, the distributions were skewed towards the color of the dark-fruited parent. A major QTL for skin and flesh color was identified on linkage group (LG) 3. Two QTLs for skin and flesh color were also identified on LG 6 and LG 8, respectively, indicating segregation for minor genes. The significance and magnitude of the QTL identified on LG 3 suggests the presence of a major regulatory gene within this QTL interval. A candidate gene PavMYB10, homologous to apple MdMYB10 and Arabidopsis AtPAP1, is within the interval of the major QTL on LG 3, suggesting that PavMYB10 could be the major determinant of fruit skin and flesh coloration in sweet cherry.  相似文献   

6.
The common flesh color of commercially grown watermelon is red due to the accumulation of lycopene. However, natural variation in carotenoid composition that exists among heirloom and exotic accessions results in a wide spectrum of flesh colors. We previously identified a unique orange flesh watermelon accession (NY0016) that accumulates mainly β-carotene and no lycopene. We hypothesized this unique accession could serve as a viable source for increasing provitamin A content in watermelon. Here we characterize the mode of inheritance and genetic architecture of this trait. Analysis of testcrosses of NY0016 with yellow and red fruited lines indicated a codominant mode of action as F1 fruits exhibited a combination of carotenoid profiles from both parents. We combined visual color phenotyping with genotyping-by-sequencing of an F2:3 population from a cross of NY0016 by a yellow fruited line, to map a major locus on chromosome 1, associated with β-carotene accumulation in watermelon fruit. The QTL interval is approximately 20 cM on the genetic map and 2.4 Mb on the watermelon genome. Trait-linked marker was developed and used for validation of the QTL effect in segregating populations across different genetic backgrounds. This study is a step toward identification of a major gene involved in carotenoid biosynthesis and accumulation in watermelon. The codominant inheritance of β-carotene provides opportunities to develop, through marker-assisted breeding, β-carotene-enriched red watermelon hybrids.  相似文献   

7.
大蜡螟幼虫的体色遗传规律   总被引:1,自引:1,他引:0  
对大蜡螟Galleria mellonella幼虫不同颜色品系的普通遗传学分析表明,大蜡螟幼虫的体色遗传是常染色体遗传且符合复等位基因遗传规律。深黄色基因(AA)对灰黑色基因(BB)和灰色基因(CC)为显性,深黄色基因(AA)对白黄色基因(DD)、灰黑色基因(BB)对白黄色基因(DD)和灰色基因(CC)、灰色基因(CC)对白黄色基因(DD)为不完全显性。基因型为AD、BD、CD的个体,其表现型均为黄色;基因型为AA、BC的个体,其表现型均为深黄色。  相似文献   

8.
Mo W  Ma W  Chen L  Zhu F  Li J 《Genetika》2005,41(5):702-704
Genetic regulation on body color of a mutant strain, JBM of Helicoverpa armigera with black body color of pupae and adults, was investigated. Reciprocal crosses between JBM and JBW (a wild strain with yellow brown body color of pupae and adults) were used to determine the inheritance characteristics of body color. Analysis of the ratio of phenotype segregation from the F1 generation, F2 generation, F3 generation, BC1 (F1 x JBM) generation and F1 generation of BC1 indicated that the black body color was controlled by one recessive gene.  相似文献   

9.
曹建军  梁宗锁 《植物研究》2008,28(4):426-432
为了掌握欧报春各花色遗传规律服务于良种生产,通过对欧报春各色花进行色素吸收光谱和薄层层析分析,进行不同花色杂交研究,分析了欧报春各色花所含色素类型及各花色遗传规律。结果显示欧报春群体含多种花色素,单株也可含有多种花色素,形成多变的粉色、红色及蓝色花。黄色深浅主要由类胡萝卜素含量决定。白色对粉色及黄色为隐性遗传,黄色、粉色为显性遗传并有数量遗传特征,黄色与粉色独立遗传。蓝色为多基因控制的隐性遗传,并具有数量遗传特征。  相似文献   

10.
卷蛾分索赤眼蜂雌蜂的颜色偏好性   总被引:1,自引:0,他引:1  
为了确定卷蛾分索赤眼蜂Trichogrammatoidea bactrae Nagaraja 雌蜂的颜色偏好性, 在室内通过在培养皿底部黏贴彩纸的方法测定卷蛾分索赤眼蜂雌蜂对红、 黄、 黑、 紫、 绿、 白、 蓝7种颜色的行为趋性反应。结果表明, 卷蛾分索赤眼蜂雌蜂在红、 黄、 紫、 绿和蓝5种颜色上的滞留时间都极显著地高于对照(P<0.01), 在黑和白2种颜色上的滞留时间与对照没有显著差异(P>0.05); 对黄色的首次选择率极显著高于对照(P< 0.01), 对红、 紫、 绿和蓝色的首次选择率均显著高于对照(P<0.05), 对黑色和白色的首次选择率与对照没有显著差异。当雌蜂分别在黄与红、 紫、 绿和蓝两两颜色之间选择时, 雌蜂在黄色彩纸上的滞留时间显著长于其他4种颜色。当雌蜂对红、 紫、 绿、 蓝和黄色5种颜色一起选择时, 在首次选择率、 滞留次数上5种颜色间都没有明显差异(P>0.05); 但在红色和蓝色上的滞留时间显著长于紫色(P<0.05), 在这3种颜色上的滞留时间与在黄色和绿色上的滞留时间均无显著差异(P>0.05)。卷蛾分索赤眼蜂雌蜂在7种颜色卵卡上分别与透明纸(对照)上的米蛾卵的选择寄生时, 在黄色卵卡上的寄生卵量极显著多于对照(P<0.01), 黑色卵卡上的寄生卵量极显著少于对照(P<0.01), 其他5种颜色的卵卡上的寄生卵量与对照没有显著差异(P>0.05)。结果说明, 卷蛾分索赤眼蜂雌蜂对黄色最为偏好, 其次偏好红、 紫、 绿和蓝色, 较不喜好白色和黑色。  相似文献   

11.
Fruit can use different skin colors to attract animals for seed dispersal. Interestingly, however, many fruits such as watermelon, which has a green outer rind, also have colored flesh. The potential reasons underlying this phenomenon were investigated here. White (low maturity), pink (medium maturity), and red-fleshed (high maturity) watermelons were collected and their flesh antioxidant capacities were compared by evaluating Fe3+ reducing power and DPPH radical scavenging capacity. Results showed that the antioxidant capacity of fruit flesh at different maturity stages was highest in red flesh, lower in pink flesh, and lowest in white flesh. Moreover, extracts of these flesh samples were obtained and the germination rate and lipid peroxidation of aged seeds, which were pre-treated with these extracts during the artificial aging process, were investigated. This showed that the extracts can significantly increase germination rate, but decrease lipid peroxidation of aged watermelon seeds, with the greatest changes observed with red-flesh extracts and the smallest with white flesh. Dimethyl thiourea, a specific scavenger of free radicals and reactive oxygen species, had a similar effect on the germination rate and lipid peroxidation of aged seeds. Combining previously reported results and our findings, we propose a hypothetical model in which pigment biosynthesis results in the enhancement of antioxidant capacity to illustrate the physiological significance of flesh color on seed aging and germination.  相似文献   

12.
The commonly found flower colors in periwinkle (Catharanthus roseus)--pink, white, red-eyed, and pale pink center--are reported to be governed by the epistatic interaction between four genes--A, R, W, and I. The mode of inheritance of an uncommon flower color, orange-red corolla and white eye, was studied by crossing an accession possessing this corolla color with a white flowered variety (Nirmal). The phenotype of the F(1) plants and segregation data of F(2) and backcross generations suggested the involvement of two more interacting and independently inherited genes, one (proposed symbol E) determining the presence or absence of red eye and another (proposed symbol O) determining orange-red corolla.  相似文献   

13.
家蚕黄血抑制基因的SSR定位   总被引:6,自引:1,他引:5  
李霞  李木旺  郭秋红  徐安英  黄勇平  郭锡杰 《遗传》2008,30(8):1039-1042
家蚕黄茧性状主要由3个基因控制, 分别是黄血基因(Yellow blood, Y), 黄血抑制基因(Yellow inhibitor, I)和黄茧基因(Out-layer yellow cocoon, C)。I基因阻止类胡萝卜素从中肠上皮细胞到血淋巴的转运, 是天然黄茧形成过程中的重要控制基因。利用家蚕雌性不发生交换的特点, 采用黄血黄茧品系KY和白血白茧品系巴格达特(Ba)组配正反交群体(Ba×KY)×KY和KY×(Ba×KY), 分别记作BC1F和BC1M, 根据已经构建的家蚕SSR分子标记连锁图谱对I基因进行了定位及连锁分析。筛选出3个与I基因连锁的SSR标记。BC1F群中的所有白血个体均表现出与(Ba×KY) F1相同的杂合型带型; 而所有黄血个体带型与亲本KY一致, 为纯合型。利用另一个群体BC1M构建了关于I基因的遗传连锁图, 连锁图的遗传距离为38.4 cM, 与I基因最近的引物为S0904, 图距为7.4 cM。  相似文献   

14.
According to the coevolution hypothesis the red autumn leaves of certain tree species are a warning signal towards insects that lay their eggs on the trees. A recent study has shown that red leaves are common in wild varieties of apple (Malus pumila) but not in cultivated varieties. This suggests that autumn colors have been lost during domestication due to relaxed selection against insects. The few varieties with red leaves have small fruits, similar to their wild ancestors, which shows that they have been under less effective artificial selection. As expected by the coevolution hypothesis these red varieties are very susceptible to an insect-borne disease, fire blight. Here I report further data on the loss of autumn colors under domestication. Since red leaf color is correlated with red fruit flesh color, if red fruit flesh has more astringent taste it is possible that loss of autumn colors is not only due to relaxed selection against insect, but also to direct artificial selection against astringent taste. However even varieties with yellow flesh turn out to have astringent taste. Moreover, while red fruit flesh is common in cultivated varieties with red leaves, it is very rare in wild varieties. It is unclear, therefore, whether loss of autumn color under domestication was a byproduct of artificial selection against red fruit flesh.Key words: coevolution, autumn colors, signaling, apple, Malus pumila, domestication, artificial selection, germplasm  相似文献   

15.
16.
金针菇子实体颜色的遗传规律研究   总被引:11,自引:0,他引:11  
以金针菇黄色菌株F19和白色菌株F8801为亲本,原生质体单核化获得两亲本的单核菌株,配对杂交获得F1,从F1的子实体分离单孢菌株,与两亲本的原生质体单核化菌株进行回交配对,出菇观察子实体颜色,分析菇体颜色的遗传规律。研究结果表明,黄色为显性、白色为隐性,菇体颜色受一对基因(Cc)控制,与不亲和性因子A或B都没有连锁。  相似文献   

17.
High resistance to zucchini yellow mosaic virus-China strain (ZYMV-CH) and moderate resistance to watermelon mosaic virus (WMV) were found in a selection of PI 595203 (Citrullus lanatus var. lanatus), an Egusi type originally collected in Nigeria. Mixed inoculations showed primarily that these two viruses have no cross-protection. This fact may explain the high frequency of mixed infection often observed in commercial fields. When plants were inoculated with a mixture of the two viruses, the frequency of plants resistant to ZYMV was lower than expected, indicating that WMV infection may reduce the ability of a plant to resist ZYMV. We studied inheritance of resistance to ZYMV-CH and WMV, using crosses between a single-plant selection of PI 595203 and the ZYMV-susceptible watermelon inbreds 9811 and 98R. According to virus ratings of the susceptible parents, the resistant parent, and the F1, F2, and BC1 generations, resistance to ZYMV-CH was conferred by a single recessive gene, for which the symbol zym-CH is suggested. The high tolerance to WMV was controlled by at least two recessive genes.  相似文献   

18.
西瓜种质资源主要植物学性状的遗传多样性及相关性分析   总被引:7,自引:0,他引:7  
以我国西瓜、甜瓜种质资源中期库内1200份西瓜种质为材料,对果实重量、果肉颜色、中心糖、种子千粒重等12项主要植物学性状进行遗传多样性和相关性分析。多样性分析结果表明:我国西瓜资源12项植物学性状多样性指数平均值为1.70,种子千粒重多样性指数最大为2.37,果实形状多样性指数最小为1.02,其中果皮底色、果皮覆纹颜色、果肉颜色、果实重量、果实中心糖、种子千粒重性状数据分布较为分散。数量性状变异系数平均值为31.8,变异幅度均比其平均值大1~3倍。相关性分析结果表明:果实形状和果形指数、果肉颜色和果实中心糖、果肉颜色和种子千粒重、果皮厚度和硬度4对性状相关性极显著。种子千粒重和果实中心糖、果实重量和果皮厚度、果实重量和果皮硬度、覆纹颜色和形状4对性状相关性显著。  相似文献   

19.
菊花花色遗传及花色嵌合体发现   总被引:13,自引:0,他引:13  
栗茂腾  余龙江  王丽梅  刘建民  雷呈 《遗传》2005,27(6):948-952
对开黄花菊花和开白花菊花材料分别和开红花菊花材料进行了正反交,结果表明,花色遗传比较复杂, 在以红花材料作为母本组合中表现为比较明显的偏母性遗传特征,而以黄花和白花材料为母本则不表现偏母性特征;除此之外,菊花花色遗传还表现出不完全显性和镶嵌显性的特点。在黄花材料3501和红花材料3509所得到杂种中发现了2个分枝出现花色嵌合体的现象,该嵌合体特征是花一边为红色,而另一边则出现镶嵌显性的现象。染色体分析表明,不同颜色嵌合体花瓣的染色体数目都是36条,因此,实验所得到的花色嵌合体不是由染色体数目变化造成的,而有可能是转座子插入影响色素合成基因造成的。  相似文献   

20.
为了确定大山雀对巢箱颜色是否能够识别和对繁殖功效的影响,以利于更好的进行保护,于2007—2010年3—7月,在吉林省左家自然保护区,通过悬挂黑、蓝、绿、白和红色巢箱,对大山雀的入住状况和繁殖参数进行了调查和分析。结果显示:2007、2008、2010年红色巢箱的入住率最高,2009年低于平均值;窝卵数除2010年红色巢箱组略低于其它颜色组平均值外,其它年份略高于其它组,而各年份的出飞数红色组均高于其它组。将其它组的合并均值与红色组进行了方差分析,结果表明,窝卵数之间无显著差异,而出飞数之间则有显著差异(F=17.65,df=1,P=0.04),表明红色组的出飞数高于其他组的平均值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号