共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(1):7-16
AbstractExercise-induced changes in p66Shc-dependent signaling pathway are still not fully understood. The p66Shc protein is one of the key players in cell signaling, particularly in response to oxidative stress. Therefore, the aim of this study was to investigate the effect of prolonged swimming on the phosphorylation of p66Shc as well as the induction of mitochondrial and cellular oxidative stress in rat hearts.Male Wistar rats were divided into a sedentary control group and an exercise group. The exercised rats swam for 3 hours and were burdened with an additional 3% of their body weight. After the cessation of exercise, their hearts were removed immediately for experiments.The exercise protocol caused increased levels of the following oxidative stress parameters in cardiac cells: DNA damage, protein carbonyls, and lipid dienes. There was also increased phosphorylation of p66Shc without any alterations in Akt and extracellular signal-regulated kinases. Changes in the ferritin L levels and the L to H subunit ratio were also observed in the exercised hearts compared with the control hearts. Despite increased phosphorylation of p66Shc, no significant increase was observed in either mitochondrial H2O2 release or mitochondrial oxidative stress markers. Regardless of the changes in phosphorylation of p66Shc, the antioxidant enzyme activities (superoxide dismutase and catalase) and anti-apoptotic (Bcl2), and pro-apoptotic (Bax) protein levels were not affected by prolonged swimming. Further studies are required to investigate whether p66Shc phosphorylation is beneficial or detrimental to cardiac cells after exercise cessation. 相似文献
2.
Natalicchio A De Stefano F Perrini S Laviola L Cignarelli A Caccioppoli C Quagliara A Melchiorre M Leonardini A Conserva A Giorgino F 《American journal of physiology. Endocrinology and metabolism》2009,296(2):E228-E237
The p66(Shc) protein isoform regulates MAP kinase activity and the actin cytoskeleton turnover, which are both required for normal glucose transport responses. To investigate the role of p66(Shc) in glucose transport regulation in skeletal muscle cells, L6 myoblasts with antisense-mediated reduction (L6/p66(Shc)as) or adenovirus-mediated overexpression (L6/p66(Shc)adv) of the p66(Shc) protein were examined. L6/(Shc)as myoblasts showed constitutive activation of ERK-1/2 and disruption of the actin network, associated with an 11-fold increase in basal glucose transport. GLUT1 and GLUT3 transporter proteins were sevenfold and fourfold more abundant, respectively, and were localized throughout the cytoplasm. Conversely, in L6 myoblasts overexpressing p66(Shc), basal glucose uptake rates were reduced by 30% in parallel with a approximately 50% reduction in total GLUT1 and GLUT3 transporter levels. Inhibition of the increased ERK-1/2 activity with PD98059 in L6/(Shc)as cells had a minimal effect on increased GLUT1 and GLUT3 protein levels, but restored the actin cytoskeleton, and reduced the abnormally high basal glucose uptake by 70%. In conclusion, p66(Shc) appears to regulate the glucose transport system in skeletal muscle myoblasts by controlling, via MAP kinase, the integrity of the actin cytoskeleton and by modulating cellular expression of GLUT1 and GLUT3 transporter proteins via ERK-independent pathways. 相似文献
3.
4.
M. Lebiedzinska R. Rizzuto M.R. Wieckowski 《Archives of biochemistry and biophysics》2009,486(1):73-80
Mammalian life span can be controlled by p66Shc protein through regulation of cellular response to oxidative stress. We investigated age-related changes in the amount of p66Shc and its Ser36-phosphorylated form in various mouse organs and tissues and correlated it with the level of antioxidant enzymes. Comparing to the newborn, in adult 6-month-old mice, the level of p66Shc was increased particularly in liver, lungs, skin and diaphragm. In older animals the level of p66Shc decreased while signaling pathway responsible for Ser36 phosphorylation of p66Shc protein seemed to be continually enhanced. The amount of p66Shc phosphorylated at Ser36, significantly increased with age, resulted in higher free radical production and, in consequence accumulation of damages caused by free radicals. The increased amount of Ser36-phosphorylated p66Shc in livers of 12- and 23-month-old mice was correlated with the decreased level of antioxidant enzymes. Moreover, we found that p66Shc is a resident of mitochondria- and plasma membrane-associated membranes and that its level there depends on the age of animal. 相似文献
5.
Background
p66Shc, an isoform of Shc adaptor proteins, mediates diverse signals, including cellular stress and mouse longevity. p66Shc protein level is elevated in several carcinomas and steroid-treated human cancer cells. Several lines of evidence indicate that p66Shc plays a critical role in steroid-related carcinogenesis, and steroids play a role in its elevated levels in those cells without known mechanism.Methods and Findings
In this study, we investigated the molecular mechanism by which steroid hormones up-regulate p66Shc protein level. In steroid-treated human prostate and ovarian cancer cells, p66Shc protein levels were elevated, correlating with increased cell proliferation. These steroid effects on p66Shc protein and cell growth were competed out by the respective antagonist. Further, actinomycin D and cyclohexamide could only partially block the elevated p66Shc protein level by steroids. Treatment with proteasomal inhibitors, but not lysosomal protease inhibitor, resulted in elevated p66Shc protein levels, even higher than that by steroids. Using prostate cancer cells as a model, immunoprecipitation revealed that androgens and proteasomal inhibitors reduce the ubiquitinated p66Shc proteins.Conclusions
The data collectively indicate that functional steroid receptors are required in steroid up-regulation of p66Shc protein levels in prostate and ovarian cancer cells, correlating with cell proliferation. In these steroid-treated cells, elevated p66Shc protein level is apparently in part due to inhibiting its ubiquitination. The results may lead to an impact on advanced cancer therapy via the regulation of p66Shc protein by up-regulating its ubiquitination pathway. 相似文献6.
7.
8.
《Biochemical and biophysical research communications》2020,521(2):420-426
Previous studies showed that miR-124 had a protective role by reducing oxidant stress and preventing cell apoptosis and autophagy. However, its role in doxorubicin-induced cardiomyopathy was less known. In our study, we confirmed increased ROS and decreased expression of miR-124 in doxorubicin-treated heart tissues and primary cardiomyocytes. The oxidative stress and cell apoptosis were alleviated by overexpressing miR-124, characterized by decreased activity of MDA and increased activity of SOD. While inhibiting miR-124 generated opposed effects. Mechanistically, our bioinformatic prediction and luciferase assay confirmed that miR-124 inhibited the expression of p66Shc, a proapoptotic signaling pathway. Our results suggested that miR-124 was hopeful to become a therapeutic target in doxorubicin-related cardiomyopathy. 相似文献
9.
Natalicchio A Laviola L De Tullio C Renna LA Montrone C Perrini S Valenti G Procino G Svelto M Giorgino F 《The Journal of biological chemistry》2004,279(42):43900-43909
To investigate the role of Shc in IGF action and signaling in skeletal muscle cells, Shc protein levels were reduced in rat L6 myoblasts by stably overexpressing a Shc cDNA fragment in antisense orientation (L6/Shcas). L6/Shcas myoblasts showed marked reduction of the p66Shc protein isoform and no change in p52Shc or p46Shc proteins compared with control myoblasts transfected with the empty vector (L6/Neo). When compared with control, L6/Shcas myoblasts demonstrated 3-fold increase in Erk-1/2 phosphorylation under basal conditions and blunted Erk-1/2 stimulation by insulin-like growth factor I (IGF-I), in the absence of changes in total Erk-1/2 protein levels. Increased basal Erk-1/2 activation was paralleled by a greater proportion of phosphorylated Erk-1/2 in the nucleus of L6/Shcas myoblasts in the absence of IGF-I stimulation. The reduction of p66Shc in L6/Shcas myoblasts resulted in marked phenotypic abnormalities, such as rounded cell shape and clustering in islets or finger-like structures, and was associated with impaired DNA synthesis in response to IGF-I and lack of terminal differentiation into myotubes. In addition, L6/Shcas myoblasts were characterized by complete disruption of actin filaments and cell cytoskeleton. Treatment of L6/Shcas myoblasts with the MEK inhibitor PD98059 reduced the abnormal increase in Erk-1/2 activation to control levels and restored the actin cytoskeleton, re-establishing the normal cell morphology. Thus, the p66Shc isoform exerts an inhibitory effect on the mitogen-activated protein kinase signaling pathway in rodent myoblasts, which is necessary for maintenance of IGF responsiveness of the MEK/Erk pathway and normal cell phenotype. 相似文献
10.
The role of heme metabolism in oxidative stress development and defense reactions formation in mammals under different stress factors are discussed in the article. Heme metabolism is considered as the totality of synthesis, degradation, transport and exchange processes of exogenous heme and heme liberated from erythrocyte hemoglobin under erythrocyte aging and hemolysis. The literature data presented display normal heme metabolism including mammals heme-binding proteins and intracellular free heme pool and heme metabolism alterations under oxidative stress development. The main attention is focused to the prooxidant action of heme, the interaction of heme transport and lipid exchange, and to the heme metabolism key enzymes (delta-aminolevulinate synthase and heme oxygenase), serum heme-binding protein hemopexin and intracellular heme-binding proteins participating in metabolism adaptation under the action of factors, which cause oxidative stress. 相似文献
11.
Guarente L 《Cell metabolism》2011,14(2):151-153
Protein acetylation now rivals phosphorylation in frequency of occurrence but is incompletely understood. A?picture is presented in which protein acetylation is linked to available energy via the NAD-dependent deacetylases. This model suggests that protein acetylation regulates metabolic strategy and also helps store energy in cells. 相似文献
12.
13.
14.
Oshikawa J Kim SJ Furuta E Caliceti C Chen GF McKinney RD Kuhr F Levitan I Fukai T Ushio-Fukai M 《American journal of physiology. Heart and circulatory physiology》2012,302(3):H724-H732
p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases. 相似文献
15.
Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer's disease 总被引:3,自引:0,他引:3
Gibson GE 《Free radical biology & medicine》2002,32(11):1061-1070
Considerable evidence suggests that oxidative stress (elevated levels of reactive oxygen species), altered energy metabolism, and changes in calcium dynamics are central to Alzheimer's disease (AD). Abnormalities in each of these processes occur in AD, and they can be plausibly linked to the pathology and clinical outcome of the disease. Abnormalities in these same processes in peripheral tissues, such as fibroblasts, indicate that these are inherent properties of AD cells and are not merely a secondary response to neurodegeneration. Results in cultured cells including fibroblasts demonstrate that oxidative stress can lead to the AD-related changes in calcium and energy metabolism. Data also suggest that abnormalities in the cellular calcium stores, the ability to handle oxidative stress, and to respond to metabolic impairment link the AD-causing gene mutations to the disease process. Abnormal metabolism and oxidative stress alter the proteins and cellular processes that are modified in AD, and can be readily linked to neuronal death and brain dysfunction. Prevention and/or correction of these abnormalities are appropriate therapeutic targets. 相似文献
16.
Tiberi L Faisal A Rossi M Di Tella L Franceschi C Salvioli S 《Biochemical and biophysical research communications》2006,342(2):503-508
p66(Shc) protein has been proposed to be an indispensable factor for p53-dependent, mitochondria-mediated apoptosis in mice. Here, we show that p66(Shc) plays a pro-apoptotic role also in cell lines of human origin such as SaOs-2 and HeLa, where p53 is either absent or inactivated, thus, suggesting that p66(Shc) pro-apoptotic role is independent from the presence of a functional form of p53. The active form of p66(Shc) is phosphorylated in Serine 36. We confirm the importance of Serine 36 phosphorylation for p66(Shc) pro-apoptotic role, and our results suggest that the kinase involved in this process is activated independently from p53. 相似文献
17.
The p75 neurotrophin receptor enhances TrkA signalling by binding to Shc and augmenting its phosphorylation 总被引:2,自引:0,他引:2
Nerve growth factor (NGF) is an important neuronal survival factor, especially during development. Optimal sensitivity of the survival response to NGF requires the presence of TrkA and the p75 neurotrophin receptor, p75(NTR). Signalling pathways used by TrkA are well established, but the mechanisms by which p75(NTR) enhances NGF signalling remain far from clear. A prevalent view is that p75(NTR) and TrkA combine to form a high-affinity receptor, but definitive evidence for this is still lacking. We therefore investigated the possibility that p75(NTR) and TrkA interact via their signal transduction pathways. Using antisense techniques to down-regulate p75(NTR) and TrkA, we found that p75(NTR) specifically enhanced phosphorylation of the 46- and 52-kDa isoforms of Shc during nerve growth factor-induced TrkA activation. p75(NTR) did not enhance tyrosine phosphorylation of other TrkA substrates. Serine phosphorylation of Akt, downstream of Shc activation, was also p75(NTR)-dependent. We consistently detected co-immunoprecipitation of p75(NTR) and Shc. These data indicate that p75(NTR) interacts with Shc physically, via a binding interaction, and functionally, by assisting its phosphorylation. Whilst providing evidence that p75(NTR) augments TrkA signal transduction, these results do not preclude the presence of a p75(NTR)-TrkA high-affinity NGF receptor. 相似文献
18.
The abundance of mitochondria is regulated by biogenesis and division. These processes are controlled by cellular factors, given that, for example, mitochondria have to replicate their DNA prior to cell division. However, the mechanisms that allow a synchronization of cell proliferation with mitochondrial genome replication are still obscure. We report here our investigations on the role of proliferation and the contribution of Ras and p66Shc in the regulation of mitochondrial DNA copy number. Ras proteins mediate a variety of receptor-transduced mitogenic signals and appear to play an essential role in the cellular response to growth factors. P66Shc is a genetic determinant of life span in mammals and has been implicated in the regulation of receptor signaling and various mitochondrial functions. First, we confirmed previous reports showing that mitochondrial DNA is replicated during a specific phase of the cell cycle (the pre-S phase) and provided novel evidences that this process is regulated by mitogenic growth factors. Second, we showed that mitochondrial DNA replication is activated following Ras-induced cellular hyper-proliferation. Finally, we showed that p66Shc expression induces mitochondrial DNA replication, both in vitro and in vivo. We suggest that mitochondria are target of intracellular signaling pathways leading to proliferation, involving Ras and p66Shc, which might function to integrate cellular bio-energetic requirements and the inheritance of mitochondrial DNA in a cell cycle-dependent manner. 相似文献
19.
Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis 总被引:13,自引:0,他引:13
Giorgio M Migliaccio E Orsini F Paolucci D Moroni M Contursi C Pelliccia G Luzi L Minucci S Marcaccio M Pinton P Rizzuto R Bernardi P Paolucci F Pelicci PG 《Cell》2005,122(2):221-233
Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals. 相似文献
20.
Orsini F Migliaccio E Moroni M Contursi C Raker VA Piccini D Martin-Padura I Pelliccia G Trinei M Bono M Puri C Tacchetti C Ferrini M Mannucci R Nicoletti I Lanfrancone L Giorgio M Pelicci PG 《The Journal of biological chemistry》2004,279(24):25689-25695
P66Shc regulates life span in mammals and is a critical component of the apoptotic response to oxidative stress. It functions as a downstream target of the tumor suppressor p53 and is indispensable for the ability of oxidative stress-activated p53 to induce apoptosis. The molecular mechanisms underlying the apoptogenic effect of p66Shc are unknown. Here we report the following three findings. (i) The apoptosome can be properly activated in vitro in the absence of p66Shc only if purified cytochrome c is supplied. (ii) Cytochrome c release after oxidative signals is impaired in the absence of p66Shc. (iii) p66Shc induces the collapse of the mitochondrial trans-membrane potential after oxidative stress. Furthermore, we showed that a fraction of cytosolic p66Shc localizes within mitochondria where it forms a complex with mitochondrial Hsp70. Treatment of cells with ultraviolet radiation induced the dissociation of this complex and the release of monomeric p66Shc. We propose that p66Shc regulates the mitochondrial pathway of apoptosis by inducing mitochondrial damage after dissociation from an inhibitory protein complex. Genetic and biochemical evidence suggests that mitochondria regulate life span through their effects on the energetic metabolism (mitochondrial theory of aging). Our data suggest that mitochondrial regulation of apoptosis might also contribute to life span determination. 相似文献