首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究以谷氨酸棒杆菌(Corynebacterium glutamicum)标准菌株ATCC 13032染色体为模板,设计引物PCR扩增高丝氨酸脱氢酶编码基因(hom),在hom基因内部插入一段来源于质粒pET28a的卡那霉素抗性基因(Km),得到基因元件hom::Km;通过电击转化法将hom::Km转入出发菌株替换原菌株的hom,在含卡那霉素的平板上挑取阳性转化子,通过PCR验证得到高丝氨酸脱氢酶缺陷的重组菌。发酵结果表明重组菌C.g- hom::Km -8发酵60小时赖氨酸产量达到4.7 g/L,是出发菌株谷氨酸棒杆菌ATCC 13032(0.7 g/L)的6.7倍。  相似文献   

2.
旨在提高谷氨酸棒杆菌合成尸胺的能力,将CadB克隆至谷氨酸棒杆菌中,与LDC共表达,在谷氨酸棒杆菌合成尸胺的同时,帮助尸胺转运至细胞外,解除尸胺的反馈抑制作用。谷氨酸棒杆菌能够高产赖氨酸脱羧酶的底物L-赖氨酸,但不含ldc和cadB基因,因而不能够直接合成尸胺。从E.coliK12中克隆出赖氨酸-尸胺反向转运蛋白基因,与绿色荧光蛋白基因gfp融合构建成融合表达载体pXBG,并转化至谷氨酸棒杆菌进行诱导表达,结果表明表达的CadB蛋白可以正确的定位于谷氨酸棒杆菌的细胞膜上。将基因cadB连接到含有赖氨酸脱羧酶基因的pXMJ19-ldc上,构建成能够共表达赖氨酸脱羧酶和赖氨酸-尸胺反向转运蛋白的重组质粒pXLB,并转化到谷氨酸棒杆菌中。  相似文献   

3.
谷氨酸棒杆菌中ldh基因编码乳酸脱氢酶,可催化丙酮酸转化生成乳酸.利用重叠延伸PCR的方法,获得中间缺失部分序列的dldh基因片段,将其与载体pk 18mobsacB连接,转化大肠杆菌感受态,筛选出阳性转化子后,转化谷氨酸棒杆菌ATCC 13032感受态细胞.分别在卡那霉素抗性平板及10%蔗糖平板上进行两次筛选,利用PCR方法鉴定,成功获得ldh基因缺失的谷氨酸棒杆菌突变株ATCC 13032-(4)ldh.应用荧光定量PCR检测,ATCC 13032-(z)ldh中的ldh基因在转录水平与野生型菌株ATCC 13032相比,相对表达量为O.ldh基因的敲除对菌株的生长造成了一定的影响.  相似文献   

4.
5.
6.
7.
We have reported increased glutamate production by a mutant of Corynebacterium glutamicum ATCC14067 (strain F172-8) with reduced H(+)-ATPase activity under biotin-limiting culture conditions (Aoki et al. Biosci. Biotechnol. Biochem., 69, 1466-1472 (2005)). In the present study, we examined valine production by an H(+)-ATPase-defective mutant of C. glutamicum. Using the double-crossover chromosome replacement technique, we constructed a newly defined H(+)-ATPase-defective mutant from ATCC13032. After transforming the new strain (A-1) with a C-terminal truncation of acetohydroxyacid synthase gene (ilvBN), valine production increased from 21.7 mM for the wild-type strain to 46.7 mM for the A-1 in shaking flask cultures with 555 mM glucose. Increased production of the valine intermediate acetoin was also observed in A-1, and was reduced by inserting acetohydroxyacid isomeroreductase gene (ilvC) into the ilvBN plasmid. After transformation with this new construct, valine production increased from 38.3 mM for the wild-type strain to 95.7 mM for A-1 strain. To the best of our knowledge, this is the first report indicating that an H(+)-ATPase-defective mutant of C. glutamicum is capable of valine production. Our combined results with glutamate and valine suggest that the H(+)-ATPase defect is also effective in the fermentative production of other practical compounds.  相似文献   

8.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

9.
The expression of the structural gene (sacB) encoding Bacillus subtilis levansucrase in two gram-positive soil bacteria, Corynebacterium glutamicum ATCC 13032 and Streptomyces lividans 1326, was investigated. sacB expression in the presence of sucrose is lethal to C. glutamicum but not to S. lividans. While S. lividans secretes levansucrase into the medium, we could show that the enzyme is retained by C. glutamicum cells. Our results imply that the sacB gene can be used as a positive selection system in coryneform bacteria.  相似文献   

10.
A chromosomal DNA fragment from the erythromycin-sensitive bacterium Corynebacterium glutamicum ATCC 13032 was shown to mediate resistance against erythromycin, tetracycline, puromycin, and bleomycin in Escherichia coli. Multicopy cloning of the fragment did not cause a resistance phenotype in C. glutamicum. The corresponding gene encodes a hydrophobic protein with 12 potential transmembrane-spanning ex-helical segments showing similarity to drug-H+ antiporters.  相似文献   

11.
分别以高产L-丝氨酸的谷氨酸棒杆菌(Corynebacterium glutamicum)SYPS-062与模式菌株谷氨酸棒杆菌(Corynebacterium glutamicum) ATCC 13032的基因组DNA为模板,运用PCR技术扩增出氨基脱氧分支酸合成酶(ADC synthase)的编码基因pabAB。实验结果表明:来源于SYPS-062和ATCC 13032的pabAB片段全长均为1863bp,编码620个氨基酸。两片段存在16个碱基的差异,引起了7个氨基酸的突变。将pabAB连接表达载体pET-28a(+),构建表达质粒pET-28a-pabAB,并转化E.coli BL21(DE3),在IPTG诱导下,E.coli BL21(DE3)(pET-28a-pabAB)高效表达分子量约为67kDa的可溶性蛋白。表达产物带有His-tag标记,选用Ni柱对表达产物进行纯化,纯化后酶活测定结果表明,来源于SYPS-062氨基脱氧分支酸合成酶的比酶活低于ATCC 13032达46.6%。  相似文献   

12.
13.
Corynebacterium glutamicum possesses two terminal oxidases, cytochrome aa3 and cytochrome bd. Cytochrome aa3 forms a supercomplex with the cytochrome bc1 complex, which contains an unusual diheme cytochrome c1. Both the bc1 -aa3 supercomplex and cytochrome bd transfer reducing equivalents from menaquinol to oxygen; however, they differ in their proton translocation efficiency by a factor of three. Here, we analyzed the role of cytochrome bd for growth and lysine production. When cultivated in glucose minimal medium, a cydAB deletion mutant of C. glutamicum ATCC 13032 grew like the wild type in the exponential phase, but growth thereafter was inhibited, leading to a biomass formation 40% less than that of the wild type. Constitutive overproduction of functional cytochrome bd oxidase in ATCC 13032 led to a reduction of the growth rate by approximately 45% and of the maximal biomass by approximately 35%, presumably as a consequence of increased electron flow through the inefficient cytochrome bd oxidase. In the L-lysine-producing C. glutamicum strain MH20-22B, deletion of the cydAB genes had only minor effects on growth rate and biomass formation, but lysine production was increased by approximately 12%. Thus, the respiratory chain was shown to be a target for improving amino acid production by C. glutamicum.  相似文献   

14.
Li L  Wada M  Yokota A 《Proteomics》2007,7(23):4317-4322
We constructed a cytoplasmic proteome reference map for a glutamic acid producing Corynebacterium glutamicum ATCC 14067 by 2-DE and protein identification by MALDI-TOF-MS and PMF using genome database of the type strain ATCC 13032. The map allowed us to identify 166 protein spots representing 139 different proteins. A considerable strain difference was observed in the proteomic images between strains ATCC 14067 and ATCC 13032 grown under the glutamic acid production conditions, suggesting the importance of strain-specific reference map for proteomic analysis.  相似文献   

15.
A cation-selective channel (porin), designated PorA, facilitates the passage of hydrophilic solutes across the cell wall of the mycolic acid-containing actinomycete Corynebacterium glutamicum. Biochemical and electrophysiological investigations of the cell wall of the mutant strain revealed the presence of an alternative channel-forming protein. This porin was purified to homogeneity and studied in lipid bilayer membranes. It forms small anion-selective channels with a diameter of about 1.4 nm and an average single-channel conductance of about 700 pS in 1 M KCl. The PorBCglut channel could be blocked by citrate in a dose-dependent manner. This result was in agreement with growth experiments in citrate as sole carbon source where growth in citrate was impaired as compared with growth in other carbon sources. The PorBCglut protein was partially sequenced and based on the resulting amino acid sequence of the corresponding gene, which was designated as porB, was identified as an unannotated 381 bp long open reading frame (ORF) in the published genome sequence of C. glutamicum ATCC13032. PorBCglut contains 126 amino acids with an N-terminal extension of 27 amino acids. One hundred and thirty-eight base pairs downstream of porB, we found an ORF that codes for a protein with about 30% identity to PorBCglut, which was named PorCCglut. The arrangement of porB and porC on the chromosome suggested that both genes belong to the same cluster. RT-PCR from overlapping regions between genes from wild-type C. glutamicum ATCC 13032 and its ATCC 13032DeltaporA mutant demonstrated that this is the case and that porB and porC are cotranscribed. The gene products PorBCglut and PorCCglut represent obviously other permeability pathways for the transport of hydrophilic compounds through the cell wall of C. glutamicum.  相似文献   

16.
Corynebacterium glutamicum is an aerobic, Gram-positive microorganism, well known as a pro-ducer of several amino acids. Amino acid products are used on a large scale for food industry flavouring, feed additive, pharmaceutical and cosmetic purpose[1,2]. The organism is able to grow not only on glucose, fructose and lactose, but also on acetate, lactate as its sole carbon source. The growth on acetate requires its activation to acetyl-CoA. In C. glutamicum, acetate is activated in a two-step …  相似文献   

17.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 2.5.1.54) catalyzes the first step of the shikimate pathway that finally leads to the biosynthesis of aromatic amino acids phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr). In Corynebacterium glutamicum ATCC 13032, two chromosomal genes, NCgl0950 (aroF) and NCgl2098 (aroG), were located that encode two putative DAHP synthases. The deletion of NCgl2098 resulted in the loss of the ability of C. glutamicum RES167 (a restriction-deficient strain derived from C. glutamicum ATCC 13032) to grow in mineral medium; however, the deletion of NCgl0950 did not result in any observable phenotypic alteration. Analysis of DAHP synthase activities in the wild type and mutants of C. glutamicum RES167 indicated that NCgl2098, rather than NCgl0950, was involved in the biosynthesis of aromatic amino acids. Cloning and expression in Escherichia coli showed that both NCgl0950 and NCgl2098 encoded active DAHP synthases. Both the NCgl0950 and NCgl2098 DAHP synthases were purified from recombinant E. coli cells and characterized. The NCgl0950 DAHP synthase was sensitive to feedback inhibition by Tyr and, to a much lesser extent, by Phe and Trp. The NCgl2098 DAHP synthase was slightly sensitive to feedback inhibition by Trp, but not sensitive to Tyr and Phe, findings that were in contrast to the properties of previously known DAHP synthases from C. glutamicum subsp. flavum. Both Co2+ and Mn2+ significantly stimulated the NCgl0950 DAHP synthase's activity, whereas Mn2+ was much more stimulatory than Co2+ to the NCgl2098 DAHP synthase's activity.  相似文献   

18.
Lv Y  Wu Z  Han S  Lin Y  Zheng S 《Journal of bacteriology》2011,193(21):6096-6097
Here we report the genome sequence of Corynebacterium glutamicum S9114, an industrial producer widely used in production of glutamate in China. Preliminary comparison with the sequences of the Corynebacterium glutamicum strains ATCC 13032 and R revealed some notable mutagenesis that might be related to the high yield of glutamate.  相似文献   

19.
20.
Corynebacterium glutamicum has played a principal role in the progress of the amino acid fermentation industry. The complete genome sequence of the representative wild-type strain of C. glutamicum, ATCC 13032, has been determined and analyzed to improve our understanding of the molecular biology and physiology of this organism, and to advance the development of more efficient production strains. Genome annotation has helped in elucidation of the gene repertoire defining a desired pathway, which is accelerating pathway engineering. Post genome technologies such as DNA arrays and proteomics are currently undergoing rapid development in C. glutamicum. Such progress has already exposed new regulatory networks and functions that had so far been unidentified in this microbe. The next goal of these studies is to integrate the fruits of genomics into strain development technology. A novel methodology that merges genomics with classical strain improvement has been developed and applied for the reconstruction of classically derived production strains. How can traditional fermentation benefit from the C. glutamicum genomic data? The path from genomics to biotechnological processes is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号