首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ischemic preconditioning (IPC) strongly protects against ischemia-reperfusion injury; however, its effect on subsequent myocardial oxygenation is unknown. Therefore, we determine in an in vivo mouse model of regional ischemia and reperfusion (I/R) if IPC attenuates postischemic myocardial hyperoxygenation and decreases formation of reactive oxygen/nitrogen species (ROS/RNS), with preservation of mitochondrial function. The following five groups of mice were studied: sham, control (I/R), ischemic preconditioning (IPC + I/R, 3 cycles of 5 min coronary occlusion/5 min reperfusion) and IPC + I/R N(G)-nitro-L-arginine methyl ester treated, and IPC + I/R eNOS knockout mice. I/R and IPC + I/R mice were subjected to 30 min regional ischemia followed by 60 min reperfusion. Myocardial Po(2) and redox state were monitored by electron paramagnetic resonance spectroscopy. In the IPC + I/R, but not the I/R group, regional blood flow was increased after reperfusion. Po(2) upon reperfusion increased significantly above preischemic values in I/R but not in IPC + I/R mice. Tissue redox state was measured from the reduction rate of a spin probe, and this rate was 60% higher in IPC than in non-IPC hearts. Activities of NADH dehydrogenase (NADH-DH) and cytochrome c oxidase (CcO) were reduced in I/R mice after 60 min reperfusion but conserved in IPC + I/R mice compared with sham. There were no differences in NADH-DH and CcO expression in I/R and IPC + I/R groups compared with sham. After 60 min reperfusion, strong nitrotyrosine formation was observed in I/R mice, but only weak staining was observed in IPC + I/R mice. Thus IPC markedly attenuates postischemic myocardial hyperoxygenation with less ROS/RNS generation and preservation of mitochondrial O(2) metabolism because of conserved NADH-DH and CcO activities.  相似文献   

2.
Ischemic postconditioning (IPOC) could be ineffective or even detrimental if the index ischemic duration is either too short or too long. The present study is to demonstrate that oxygen supply and metabolism defines a salvageable ischemic time window of IPOC in mice. C57BL/6 mice underwent coronary artery occlusion followed by reperfusion (I/R), with or without IPOC by three cycles of 10 s/10 s R/I. In vivo myocardial tissue oxygenation was monitored with electron paramagnetic resonance oximetry. Regional blood flow (RBF) was measured with a laser Doppler monitor. At the end of 60 min reperfusion, tissue from the risk area was collected, and mitochondrial enzyme activities were assayed. Tissue oximetry demonstrated that I/R induced a reperfusion hyperoxygenation state in the 30- and 45-min but not 15- and 60-min ischemia groups. IPOC attenuated the hyperoxygenation with 45 but not 30 min ischemia. RBF, eNOS phosphorylation, and mitochondrial enzyme activities were suppressed after I/R with different ischemic time, and IPOC afforded protection with 30 and 45 but not 60 min ischemia. Infarct size measurement indicated that IPOC reduced infarction with 30 and 45 min but not 60 min ischemia. Clearly, IPOC protected mouse heart with a defined ischemic time window between 30 and 45 min. This salvageable time window was accompanied by the improvement of RBF due to increased phosphorylated eNOS and the preservation of mitochondrial oxygen consumption due to conserved mitochondrial enzyme activities. Interestingly, this salvageable ischemic time window was mirrored by tissue hyperoxygenation status in the postischemic heart.  相似文献   

3.
Ischemic preconditioning has shown to reduce apoptosis in the intestinal mucosa during ischemia/reperfusion. This study evaluated if the decrease of apoptotic events found during preconditioning could be related with a reduction of the substrate (i.e., xanthine/hypoxanthine) available for xanthine oxidase (XO). Animals were randomly assigned to the following study groups: C, control; I/R, ischemia/reperfusion; P+I/R, ischemic preconditioning; P+I/R+H/X, ischemic preconditioning plus hypoxanthine/xanthine, and P+I/R+H/X+Allo, ischemic preconditioning plus hypoxanthine/xanthine plus allopurinol. Caspase-3 activity, DNA fragmentation and TUNEL staining increased in the I/R group compared to control. Ischemic preconditioning (P+I/R group) was able to reverse these apoptotic variables to a level similar to that of control rats. The addition of hypoxanthine/xanthine to rats subjected to ischemic preconditioning (P+I/R+H/X group) showed the highest apoptotic activity; however, further addition of allopurinol (P+I/R+H/X+Allo group) decreased significantly apoptotic activity and events. In conclusion, intestinal ischemic preconditioning is able to reduce apoptosis during the following sustained ischemia/reperfusion event because of a reduced accumulation of xanthine/hypoxanthine nucleotide.  相似文献   

4.
The precise mechanisms underlying skeletal muscle damage in Duchenne muscular dystrophy (DMD) remain ill-defined. Functional ischemia during muscle activation, with subsequent reperfusion during rest, has been documented. Therefore, one possibility is the presence of increased oxidative stress. We applied a model of acute hindlimb ischemia/reperfusion (I/R) in mdx mice (genetic homolog of DMD) to evaluate dynamic in vivo responses of dystrophic muscles to this form of oxidative stress. Before the application of I/R, mdx muscles showed: 1) decreased levels of total glutathione (GSH) with an increased oxidized (GSSG)-to-reduced (GSH) glutathione ratio; 2) greater activity of the GSH-metabolizing enzymes glutathione peroxidase (GPx) and glutathione reductase; and 3) lower activity levels of NADP-linked isocitrate dehydrogenase (ICDH) and aconitase, two metabolic enzymes that are sensitive to inactivation by oxidative stress and also implicated in GSH regeneration. Interestingly, nondystrophic muscles subjected to I/R exhibited similar changes in total glutathione, GSSG/GSH, GPx, ICDH, and aconitase. In contrast, all of the above remained stable in mdx muscles subjected to I/R. Taken together, these results suggest that mdx muscles are chronically subjected to increased oxidative stress, leading to adaptive changes that attempt to protect (although only in part) the dystrophic muscles from acute I/R-induced oxidative stress. In addition, mdx muscles show significant impairment of the redox-sensitive metabolic enzymes ICDH and aconitase, which may further contribute to contractile dysfunction in dystrophic muscles.  相似文献   

5.
This study shows the effect of transient global cerebral ischemia (ISC) on hippocampal acetylcholinesterase (AChE) activity. Naive adult Wistar rats received either a brief (2 min) or a long (10 min) ischemic episode by the four-vessel occlusion method. Pre-conditioned rats received double ischemia: a 10 min episode inflicted 24 h after a 2 min event, a condition known to confer cytoprotection to CA1 pyramidal cells of hippocampus. 2 min of ischemia caused an increase in acetylcholinesterase activity both immediately and 30 min after the episode, however enzyme activity was significantly decreased after 24 h of reperfusion. 10 min of ischemia caused an increase in activity both 60 min and 24 h after ischemia. Conversely, pre-conditioned rats displayed lower activity both immediately and 60 min after ischemia. Our results suggest that: a) neuronal death, that follows 10 min of ischemia, is associated to a late increase in acetylcholinesterase activity; b) pre-conditioning is related to diminished acetylcholinesterase activity. This is in agreement with previous evidence that acetylcholinesterase inhibition and maintenance of acetylcholine levels are beneficial for cell surviving after cerebral ischemia.  相似文献   

6.
Gao S  Oh YB  Park BM  Park WH  Kim SH 《Peptides》2012,36(2):199-205
Urotensin II (UII) is a vasoactive peptide which is bound to a G protein-coupled receptor. UII and its receptor are upregulated in ischemic and chronic hypoxic myocardium, but the effect of UII on ischemic reperfusion (I/R) injury is still controversial. The aim of the present study was to investigate whether UII protects heart function against I/R injury. Global ischemia was performed using isolated perfused Langendorff hearts of Sprague-Dawley rats. Hearts were perfused with Krebs-Henseleit buffer for 20min pre-ischemic period followed by a 20min global ischemia and 50min reperfusion. Pretreatment with UII (10nM) for 10min increased recovery percentage of the post-ischemic left ventricular developed pressure and ±dp/dt, and decreased post-ischemic left ventricular end-diastolic pressure as compared with I/R group. UII decreased infarct size and an increased lactate dehydrogenase level during reperfusion. Cardioprotective effects of UII were attenuated by pretreatment with UII receptor antagonist. The hydrogen peroxide activity was increased in UII-treated heart before ischemia. The Mn-SOD, catalase, heme oxygenase-1 and Bcl-2 levels were increased, and the Bax and caspase-9 levels were decreased in UII-treated hearts. These results suggest that UII has cardioprotective effects against I/R injury partly through activating antioxidant enzymes and reactive oxygen species.  相似文献   

7.
纳冬梅  孙强  曹坪  张宏  徐波 《生物磁学》2011,(10):1847-1850
目的:通过检测SD大鼠脑缺血再灌注模型血清中血管内皮生长因子(VEGF)与神经元凋亡动态表迭变化的关系,以探讨两者之间的相关性。方法:将40只大鼠随机分为8组:对照组、假手术组和脑缺血30min再灌注12h组、1d组、3d组、5d组、7d组、及14d组,每组5只。采用ELISA双抗夹心法检测大鼠血清中血管内皮生长因子、原位细胞凋亡TUNEL法检测脑组织中的凋亡神经细胞数。结果:再灌注12h、1d、3d、5d、7d及14d大鼠血清VEGF表达和凋亡神经元百分比的变化均为负相关性(均为P〈0.05)。结论:在脑缺血再灌注大鼠模型中,缺血诱导使VEGF的表达发生变化,VEGF通过直接或间接的途径抑制神经元凋亡。  相似文献   

8.
Ischemic post-conditioning (Post-cond) is a phenomenon in which intermittent interruptions of blood flow in the early phase of reperfusion can protect organ from ischemia/reperfusion (I/R) injury. Recent studies demonstrated ischemic Post-cond reduced infarct size in cerebral I/R injury. However, the molecular mechanisms underlying this phenomenon are not completely understood. As inflammation is known to be detrimental to the neurological outcome during the acute phase after stroke, we investigated whether ischemic Post-cond played its protective role in preventing post-ischemic inflammation in the rat middle cerebral artery occlusion model. Rats were treated with ischemic Post-cond after 60 min of occlusion (beginning of reperfusion). The infarct volume and myeloperoxidase activity were assessed at 24 h. The lipid peroxidation levels was evaluated by malondialdehyde assay and the expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1 were studied by RT-PCR or western blotting. Ischemic Post-cond decreased myeloperoxidase activity and expressions of interleukin-1β, tumor necrosis factor-α, and intercellular adhesion molecule 1. Ischemic Post-cond also reduced infarct volume and lipid peroxidation levels. These findings indicated that ischemic Post-cond may be a promising neuroprotective approach for focal cerebral I/R injury and it is achieved, at least in part, by the inhibition of inflammation.  相似文献   

9.
Lee WY  Koh EJ  Lee SM 《Nitric oxide》2012,26(1):1-8
This study examined the cytoprotective mechanisms of a combination of ischemic preconditioning (IPC) and allopurinol against liver injury caused by ischemia/reperfusion (I/R). Allopurinol (50 mg/kg) was intraperitoneally administered 18 and 1 h before sustained ischemia. A rat liver was preconditioned by 10 min of ischemia, followed by 10 min of reperfusion, and then subjected to 90 min of ischemia, followed by 5 h of reperfusion. Rats were pretreated with adenosine deaminase (ADA), 3,7-dimethyl-1-[2-propargyl]-xanthine (DMPX), and N-nitro-l-arginine methyl ester (l-NAME) before IPC. Hepatic nitrite and nitrate and eNOS protein expression levels were increased by the combination of IPC and allopurinol. This increase was attenuated by ADA, DMPX, and l-NAME. I/R induced an increase in alanine aminotransferase activity, whereas it decreased the hepatic glutathione level. A combination of IPC and allopurinol attenuated these changes, which were abolished by ADA, DMPX, and l-NAME. The increase in the liver wet weight-to-dry weight ratio after I/R was attenuated by the combination of IPC and allopurinol. In contrast, hepatic bile flow was decreased after I/R, which was attenuated by the combination of IPC and allopurinol. These changes were restored by l-NAME. I/R induced a decrease in the level of mitochondrial dehydrogenase, whereas it increased mitochondrial swelling. A combination of IPC and allopurinol attenuated these changes, which were restored by ADA, DMPX, and l-NAME. Our findings suggest that a combination of IPC and allopurinol reduces post-ischemic hepatic injury by enhancing NO generation.  相似文献   

10.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

11.
In situ rabbit hearts were subjected to 15 min of regional myocardial ischemia, and at various time points of reperfusion, antioxidant enzyme activity and mRNA expression were measured in ischemic and nonischemic myocardium. Catalase activity increased significantly in both ischemic and nonischemic myocardium, peaking at 1 h after reperfusion and then gradually returning to the control level. Northern blot analysis showed enhanced expression of catalase mRNA in both areas. There were no changes in redox status, because glutathione levels were not altered by ischemia-reperfusion (I/R). We also tested whether catalase activation in the heart results from signaling pathways that might influence not only the heart but also other organs. We found that catalase activity in the brain was increased after myocardial I/R and ischemic stress to the intestine was equipotent to myocardial I/R in catalase activation. We next sought to elucidate the possible involvement of the adrenergic system in catalase stimulation induced by ischemic stimuli. After pretreatment with the alpha-adrenergic receptor antagonist prazosin, I/R failed to increase catalase activity in the heart and brain. Intravenous norepinephrine increased catalase activity in the heart, brain, and liver. This study shows that brief I/R activates a signaling mechanism to induce catalase activation in multiple organs and the alpha-adrenergic system is involved as an intermediate pathway in this signal transmission.  相似文献   

12.
Cardiac ischemia may be responsible for either the loss of endothelial nitric oxide synthase (eNOS) or changes in its activity, both conditions leading to coronary dysfunction. We investigated whether early ischemic preconditioning was able to preserve eNOS protein expression and function in the ischemic/reperfused myocardium. Langendorff-perfused rat hearts were subjected to 20 min global ischemia, followed by 30 min reperfusion (I/R). A second group of hearts was treated as I/R, but preconditioned with three cycles of 5 min-ischemia/5 min-reperfusion (IP). Cardiac contractility markedly decreased in I/R, consistently with the rise of creatine kinase (CK) activity in the coronary effluent, whilst ischemic preconditioning significantly improved all functional parameters and reduced the release of CK. Western blot analysis revealed that the amount of eNOS protein decreased by 54.2% in I/R with respect to control (p < 0.01). On the other hand, NOS activity was not significantly reduced in I/R, as well as cGMP tissue levels, suggesting that a parallel compensatory stimulation of this enzymatic activity occurred during ischemia/reperfusion. Ischemic preconditioning completely prevented the loss of eNOS. Moreover, both NOS activity and cGMP tissue level were significantly higher (p < 0.05) in IP (12.7 +/- 0.93 pmol/min/mg prot and 58.1 +/- 12.2 fmol/mg prot, respectively) than I/R (7.34 +/- 2.01 pmol/min/mg prot and 21.4 +/- 4.13 fmol/mg prot, respectively). This suggest that early ischemic preconditioning may be useful to accelerate the complete recovery of endothelial function by preserving the level of cardiac eNOS and stimulating the basal production of nitric oxide.  相似文献   

13.
Ischemia-reperfusion (I/R) lung injury causes increased vascular permeability and edema. We developed an in vivo murine model of I/R allowing measurement of pulmonary vascular barrier function without airway occlusion. The left pulmonary artery (PA) was occluded with an exteriorized, slipknotted suture in anesthetized C57BL/6J mice. The effect of ischemic time was determined by subjecting mice to 5, 10, or 30 min of left lung ischemia followed by 150 min of reperfusion. The effect of reperfusion time was determined by subjecting mice to 30 min of left lung ischemia followed by 30 or 150 min of reperfusion. Changes in pulmonary vascular barrier function were measured with the Evans blue dye (EBD) technique, dual-isotope radiolabeled albumin (RA), bronchoalveolar lavage (BAL) protein concentration, and wet weight-to-dry weight ratio (WW/DW). Increasing left lung ischemia with constant reperfusion time or increasing left lung reperfusion time after constant ischemic time resulted in significant increases in left lung EBD content at all times compared with both right lung values and sham surgery mice. The effects of left lung ischemia on lung EBD were corroborated by RA but the effects of increasing reperfusion time differed, suggesting binding of EBD to lung tissue. An increase in WW/DW was only detected after 30 min of reperfusion, suggesting edema clearance. BAL protein concentrations were unaffected. We conclude that short periods of I/R, without airway occlusion, increase pulmonary vascular permeability in the in vivo mouse, providing a useful model to study molecular mechanisms of I/R lung injury.  相似文献   

14.
Mitochondrial electron transport chain (ETC) is the major source of reactive oxygen species during myocardial ischemia-reperfusion (I/R) injury. Ischemic defect and reperfusion-induced injury to ETC are critical in the disease pathogenesis of postischemic heart. The properties of ETC were investigated in an isolated heart model of global I/R. Rat hearts were subjected to ischemia for 30 min followed by reperfusion for 1 h. Studies of mitochondrial function indicated a biphasic modulation of electron transfer activity (ETA) and ETC protein expression during I/R. Analysis of ETAs in the isolated mitochondria indicated that complexes I, II, III, and IV activities were diminished after 30 min of ischemia but increased upon restoration of flow. Immunoblotting analysis and ultrastructural analysis with transmission electron microscopy further revealed marked downregulation of ETC in the ischemic heart and then upregulation of ETC upon reperfusion. No significant difference in the mRNA expression level of ETC was detected between ischemic and postischemic hearts. However, reperfusion-induced ETC biosynthesis in myocardium can be inhibited by cycloheximide, indicating the involvement of translational control. Immunoblotting analysis of tissue homogenates revealed a similar profile in peroxisome proliferator-activated receptor-γ coactivator-1α expression, suggesting its essential role as an upstream regulator in controlling ETC biosynthesis during I/R. Significant impairment caused by ischemic and postischemic injury was observed in the complexes I- III. Analysis of NADH ferricyanide reductase activity indicated that injury of flavoprotein subcomplex accounts for 50% decline of intact complex I activity from ischemic heart. Taken together, our findings provide a new insight into the molecular mechanism of I/R-induced mitochondrial dysfunction.  相似文献   

15.
We have demonstrated that in vitro brief ischemia activates nuclear factor (NF)-kappaB in rat myocardium. We report in vivo ischemia-reperfusion (I/R)-induced NF-kappaB activation, IkappaB kinase -beta (IKKbeta) activity, and IkappaBalpha phosphorylation and degradation in rat myocardium. Rat hearts were subjected to occlusion of the coronary artery for up to 45 min or occlusion for 15 min followed by reperfusion for up to 3 h. Cytoplasmic and nuclear proteins were isolated from ischemic and nonischemic areas of each heart. NF-kappaB activation was increased in the ischemic area (680%) after 10 min of ischemia and in the nonischemic area (350%) after 15 min of ischemia and remained elevated during prolonged ischemia and reperfusion. IKKbeta activity was markedly increased in ischemic (1,800%) and nonischemic (860%) areas, and phosphorylated IkappaBalpha levels were significantly elevated in ischemic (180%) and nonischemic (280%) areas at 5 min of ischemia and further increased after reperfusion. IkappaBalpha levels were decreased in the ischemic (45%) and nonischemic (36%) areas after 10 min of ischemia and remained low in the ischemic area during prolonged ischemia and reperfusion. The results suggest that in vivo I/R rapidly induces IKKbeta activity and increases IkappaBalpha phosphorylation and degradation, resulting in NF-kappaB activation in the myocardium.  相似文献   

16.
This study was to explore whether repeated non-invasive limb ischemic pre-conditioning (NLIP) can confer an equivalent cardioprotection against myocardial ischemia-reperfusion (I/R) injury in acute diabetic rats to the extent of conventional myocardial ischemic pre-conditioning (MIP) and whether or not the delayed protection of NLIP is mediated by reducing myocardial oxidative stress after ischemia-reperfusion. Streptozotocin-induced diabetic rats were randomized to four groups: Sham group, the I/R group, the MIP group and the NLIP group. Compared with the I/R group, both the NLIP and MIP groups showed an amelioration of ventricular arrhythmia, reduced myocardial infarct size, increased activities of total superoxide dismutase (SOD), manganese-SOD and glutathione peroxidase, increased expression of manganese-SOD mRNA and decreased xanthine oxidase activity and malondialdehyde concentration (All p < 0.05 vs I/R group). It is concluded that non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia-reperfusion injury in diabetic rats.  相似文献   

17.
This study examined the effects of ischemic preconditioning (IPC), allopurinol (Allo) or a combination of both on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). I/R increased the serum aminotransferase activity and the level of mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutathione level. Either IPC or Allo alone attenuated these changes with Allo+IPC having a synergistic effect. Allo increased the serum nitrite and nitrate level after brief ischemia. The significant peroxide production observed after 10 min of reperfusion after sustained ischemia was markedly attenuated by Allo+IPC. The mitochondria isolated after I/R were swollen, which was reduced by Allo+IPC. At the end of ischemia, the hepatic ATP level was lower and there was significant xanthine accumulation, which was attenuated by Allo+IPC. These results suggest that IPC and Allo act synergistically to protect cells against mitochondrial injury and preserve the hepatic energy metabolism during hepatic I/R.  相似文献   

18.
Ischemic preconditioning has been shown to protect several organs from ischemia/reperfusion-induced injury. In the pancreas, protective effect of ischemic preconditioning has been shown against pancreatitis evoked by ischemia/reperfusion, as well as by caerulein. However, the effect of ischemic preconditioning on the course of acute pancreatic is unclear. The aim of our study was to evaluate the influence of ischemic preconditioning on pancreatic regeneration and pancreatic presence of platelet-derived growth factor-A (PDGF-A) and vascular endothelial growth factor (VEGF) in the course of ischemia/reperfusion-induced pancreatitis. METHODS: In male Wistar rats, ischemic preconditioning of the pancreas was performed by short-term clamping of celiac artery (twice for 5 min with 5 min interval). Acute pancreatitis was induced by clamping of inferior splenic artery for 30 min followed by reperfusion. Rats were sacrificed 1, 5, 12 h or 1, 2, 3, 5, 7, 9 and 21 days after the start of reperfusion. Severity of acute pancreatitis and pancreatic regeneration were determined by biochemical and morphological examination, expression of growth factors was determined by immunohistochemical analysis. RESULTS: In ischemia/reperfusion-induced pancreatitis, the pancreatic damage reached the maximal range between the first and second day of reperfusion, and was followed by subsequent pancreatic regeneration. Ischemic preconditioning alone caused mild passing pancreatic damage and an increase in plasma concentration of pro-inflammatory interleukin-1 and anti-inflammatory interleukin-10. Ischemic preconditioning applied before ischemia/reperfusion-induced pancreatitis reduced morphological and biochemical signs of the pancreatitis-evoked pancreatic damage and accelerated pancreatic regeneration. This effect was associated with improvement of pancreatic blood flow. Ischemic preconditioning, ischemia/reperfusion-induced pancreatitis and their combination increased the presence of VEGF in acinar and islet cells, and immunostaining for PDGF-A in blood vessels. This effect was maximally pronounced after combination of ischemic preconditioning plus pancreatitis and occurred earlier than after pancreatitis alone. CONCLUSIONS: Ischemic preconditioning reduces pancreatic damage and accelerates pancreatic healing in the course of ischemia/reperfusion-induced pancreatitis. This effect is associated with the increase in plasma concentration of anti-inflammatory interleukin-10, improvement of pancreatic blood flow and alteration of pancreatic immunohistochemical expression of PDGF-A and VEGF.  相似文献   

19.
目的:探讨缺血后处理对高胆固醇血症基础上发生的心肌缺血/再灌注损伤的影响及其可能的机制。方法:建立食源性高胆固醇血症大鼠模型,运用TTC染色、酶活性检测等方法测定缺血/再灌注所致的心肌损伤,用实时定量RT-PCR方法检测心肌组织中低氧诱导因子-1α(HIF-1α)mRNA水平,用Western blot方法检测HIF-1α蛋白水平。结果:高胆固醇血症加重了缺血/再灌注造成的心肌损伤,而缺血后处理显著缩小了高胆固醇血症大鼠缺血/再灌注所致的心梗面积,降低了血清肌酸激酶(CK)的活性,减少了心肌细胞凋亡。同时,缺血后处理提高了高胆固醇血症大鼠缺血心肌组织中HIF-1α的蛋白水平。结论:缺血后处理可以降低高胆固醇血症大鼠心肌对缺血/再灌注损伤的敏感性,其效应与心肌组织中HIF-1α的蛋白水平存在着相关性。  相似文献   

20.
7,8-dihydroxyflavone (7,8-DHF) is a recently identified potent agonist of tropomyosin-related kinase B that can cross the blood–brain barrier after oral or intraperitoneal administration. The aim of the present study was to determine whether 7,8-DHF has neuroprotective effects against cerebral ischemia and reperfusion (I/R) injury and, if so, to investigate the possible underlying mechanisms. Cerebral I/R injury rats were induced by middle cerebral artery occlusion for 90 min followed by reperfusion for 24 h. 7,8-DHF was administered intraperitoneally at a dose of 5 mg/kg immediately after ischemia. Our results showed that 7,8-DHF significantly reduced neurological deficit scores, infarct volumes, and neuronal apoptosis in brains of I/R rats. Meanwhile, 7,8-DHF also increased Bcl-2 expression, decreased expression of cleaved caspase-3, Bax and inducible nitric oxide synthase, and inhibited nuclear factor-κB activation in ischemic cortex. Finally, malondialdehyde and nitric oxide contents were reduced, but activities of glutathione, glutathione peroxidase and superoxide dismutase were restored in ischemic cortex treated with 7,8-DHF. Taken together, our findings demonstrated that 7,8-DHF is able to protect against cerebral I/R injury, which may be, at least in part, attributable to its anti-apoptotic, anti-oxidative and anti-inflammatory actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号