共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacteria affiliated with the genus Vibrio are endemic in marine and estuarine ecosystems and are also found in many freshwater environments. Vibrios can enter viable but non-culturable states and since many species are pathogenic, there is a great need for culture-independent methods that identify and quantify multiple Vibrio populations. We adopted Vibrio-specific 16S rRNA-directed primers and a competitive PCR protocol (QC-PCR; [Thompson, J.R., Randa, M.A., Marcelino, L.A., Tomita-Mitchell, A., Lim, E., Polz, M.F., 2004b. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103-4110]) for separation and quantification of Vibrio populations using denaturant gradient gel electrophoresis (DGGE). Sixteen Vibrio isolates and eight environmental samples were used to assess the precision and resolution of the method. A 45-70% gradient of Urea and formamide enabled separation of Vibrio populations with single nucleotide differences in the amplified fragment. A titration curve for the QC-PCR-DGGE, verified by amending surface water bacterioplankton samples with up to 3 x 10(5)Vibrio cholerae cells, could be approximated by a linear regression of log-transformed values (R(2)=0.96). The limit of detection for single populations was 180 cells per extracted sample or about 4 cells per PCR reaction. Environmental samples from the southern Stockholm archipelago in the Baltic Sea and the more saline coastal waters of Skagerrak each carried between 2 and 6 Vibrio populations, and there were major differences between the locations. Notably, multiple Vibrio populations could be detected and quantified against a background of native bacterioplankton exceeding Vibrio population abundance by more than 6 orders of magnitude. Putative identification based on migration in the DGGE gel was verified by parallel cloning and sequencing of PCR products, and representative clones were also characterized by DGGE. This general approach could also be useful for targeting other phylogenetically constrained bacterial groups and assess their abundance and distribution in complex environmental settings. 相似文献
2.
3.
Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria 总被引:40,自引:0,他引:40
Denaturing gradient gel electrophoresis (DGGE) of PCR amplicons of the ammonia monooxygenase gene (amoA) was developed and employed to investigate the diversity of ammonia-oxidizing bacteria (AOB) in four different habitats. The results were compared to DGGE of PCR-amplified partial 16S rDNA sequences made with primers specific for ammonia-oxidizing bacteria. Potential problems, such as primer degeneracy and multiple gene copies of the amoA gene, were investigated to evaluate and minimize their possible impact on the outcome of a DGGE analysis. amoA and 16S rDNA amplicons were cloned, and a number of clones screened by DGGE to determine the abundance of different motility types in the clone library. The abundance of clones was compared to the relative intensity of bands emerging in the band pattern produced by direct amplification of the genes from the environmental sample. Selected clones were sequenced to evaluate the specificity of the respective primers. The 16S rDNA primer pair, reported to be specific for ammonia-oxidizing bacteria (AOB), generated several sequences that were not related to the known Nitrosospira-Nitrosomonas group and, thus, not likely to be ammonia oxidizers. However, no false positives were found among the sequences retrieved with the modified amoA primers. Some phylogenetic information could be deduced from the position of amoA bands in DGGE gels. The Nitrosomonas-like sequences were found within a denaturant range from 30% to 46%, whereas the Nitrosospira-like sequences migrated to 50% to 60% denaturant. The majority of retrieved sequences from all four habitats with high ammonia loads were Nitrosomonas-like and only few Nitrosospira-like sequences were detected. 相似文献
4.
Pires AC Cleary DF Almeida A Cunha A Dealtry S Mendonça-Hagler LC Smalla K Gomes NC 《Applied and environmental microbiology》2012,78(16):5520-5528
Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages. 相似文献
5.
Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. 总被引:39,自引:22,他引:39
下载免费PDF全文

Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments was used to profile microbial populations inhabiting different temperature regions in the microbial mat community of Octopus Spring, Yellowstone National Park. DGGE allowed a rapid evaluation of the distributions of amplifiable sequence types. Profiles were essentially identical within regions of the mat defined by one temperature range but varied between sites with different temperature ranges. Individual DGGE bands were sequenced, and the sequences were compared with those previously obtained from the mat by cloning and from cultivated Octopus Spring isolates. Two known cyanobacterial populations and one known green nonsulfur bacterium-like population were detected by DGGE, as were many new cyanobacterial and green nonsulfur and green sulfur bacterium-like populations and a novel bacterial population of uncertain phylogenetic affiliation. The distributions of several cyanobacterial populations compared favorably with results obtained previously by oligonucleotide probe analyses and suggest that adaptation to temperature has occurred among cyanobacteria which are phylogenetically very similar. 相似文献
6.
G. E. Riedel S. L. Swanberg K. D. Kuranda K. Marquette P. LaPan P. Bledsoe A. Kennedy B.-Y. Lin 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1990,80(1):1-10
Summary We have used denaturing gradient gel electrophoresis (DGGE) to identify genomic DNA polymorphism in maize (Zea mays L.). DGGE probes detect polymorphism in maize at a frequency comparable to the incidence of restriction fragment length polymorphism (RFLP). Probes identifying polymorphism were mapped to maize chromosome arms by utilizing DGGE and maize lines carrying B-A chromosomal translocations. The methods for library construction, probe screening, and genome analysis, described here for maize, can also be applied to the genomic analysis of other organisms. 相似文献
7.
Carl Vael Liesbeth Vanheirstraeten Kristine N Desager Herman Goossens 《BMC microbiology》2011,11(1):68
Background
The extended 'hygiene hypothesis' suggests that the initial composition of the infant gut microbiota is a key determinant in the development of atopic disease. Several studies have demonstrated that the microbiota of allergic and non-allergic infants are different even before the development of symptoms, with a critical time window during the first 6 months of life. The aim of the study was to investigate the association between early intestinal colonisation and the development of asthma in the first 3 years of life using DGGE (denaturing gradient gel electrophoresis). 相似文献8.
We describe a rapid and sensitive method for the detection of nucleotide sequence variation that can be used for large-scale screening of population markers. Denaturing gradient gel electrophoresis (DGGE) detects sequence variants of amplified fragments by the differences in their melting behavior. DGGE detects most single-base substitutions when carried out on products amplified with a primer to which a GC clamp has been added. Although DGGE has been primarily used for the detection of limited numbers of single-base mutations in disease studies, it offers great potential for use in population analysis of genetic markers with greater levels of sequence variation. The methodology described was developed to identify the number and distribution of MHC class I alpha 1 alleles among chinook salmon (Oncorhynchus tshawytscha) populations. DGGE detects 28 of 31 identified alpha 1 sequences, which differ by between 1 and 16 nucleotides and a two-codon indel. By creating a network of control alleles, 22-23 of the MHC alleles can be resolved rapidly and accurately by a single gel run condition, and 27 alleles can be resolved by two gel run conditions. This techniques has been used in surveys scoring alleles from two MHC markers (class I alpha 1 and alpha 2) in 20,000 individuals of chinook and coho (O. kisutch) salmon. A single person in our laboratory now analyzes 160 salmon from one MHC locus per day with DGGE. 相似文献
9.
Le Bourhis AG Saunier K Doré J Carlier JP Chamba JF Popoff MR Tholozan JL 《Applied and environmental microbiology》2005,71(1):29-38
A nested-PCR temporal temperature gradient gel electrophoresis (TTGE) approach was developed for the detection of bacteria belonging to phylogenetic cluster I of the genus Clostridium (the largest clostridial group, which represents 25% of the currently cultured clostridial species) in cheese suspected of late blowing. Primers were designed based on the 16S rRNA gene sequence, and the specificity was confirmed in PCRs performed with DNAs from cluster I and non-cluster I species as the templates. TTGE profiles of the PCR products, comprising the V5-V6 region of the 16S rRNA gene, allowed us to distinguish the majority of cluster I species. PCR-TTGE was applied to analyze commercial cheeses with defects. All cheeses gave a signal after nested PCR, and on the basis of band comigration with TTGE profiles of reference strains, all the bands could be assigned to a clostridial species. The direct identification of Clostridium spp. was confirmed by sequencing of excised bands. C. tyrobutyricum and C. beijerinckii contaminated 15 and 14 of the 20 cheese samples tested, respectively, and C. butyricum and C. sporogenes were detected in one cheese sample. Most-probable-number counts and volatile fatty acid were determined for comparison purposes. Results obtained were in agreement, but only two species, C. tyrobutyricum and C. sporogenes, could be isolated by the plating method. In all cheeses with a high amount of butyric acid (>100 mg/100 g), the presence of C. tyrobutyricum DNA was confirmed by PCR-TTGE, suggesting the involvement of this species in butyric acid fermentation. These results demonstrated the efficacy of the PCR-TTGE method to identify Clostridium in cheeses. The sensitivity of the method was estimated to be 100 CFU/g. 相似文献
10.
Nishiguchi MK 《Applied and environmental microbiology》2000,66(8):3550-3555
The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity. 相似文献
11.
A group-specific PCR-based temperature gradient gel electrophoresis (TGGE) method was developed to study the population composition of genus Bacteroides in human gut. Highly reproducible and well-separated bands in TGGE fingerprints of ten unrelated human fecal samples showed complex and host-specific Bacteroides species composition. Dynamic monitoring over 22 months of samples from one healthy 10-year-old boy indicated a relatively stable population profile of Bacteroides. The species identity of each band in TGGE gel of this boy was also resolved via comigration analysis of sequenced inserts in a Bacteroides group-specific clone library. This work provides a rapid and effective technique for analyzing the species composition of Bacteroides in human gut. 相似文献
12.
13.
Changes in the bacterial populations of a 5-stage biological nutrient removal (BNR) process, with a step feed system for wastewater treatment, were monitored by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA fragments. DGGE analysis indicated seasonal community changes were observed, however, community profiles of the total bacteria of each reactor showed only minor differences in the samples obtained from the same season. The number of major bands was higher in the summer samples, and decreased during the winter period, indicating that the microbial community structure became simpler at low temperatures. Since the nitrogen and phosphate removal efficiencies were highly maintained throughout the winter operation period, the bacteria which still remaining in the winter sample can be considered important, playing a key role in the present 5-stage BNR sludge. The prominent DGGE bands were excised, and sequenced to gain insight into the identities of the predominant bacterial populations present, and most were found to not be closely related to previously characterized bacteria. These data suggest the importance of culture-independent methods for the quality control of wastewater treatment. 相似文献
14.
Liu D Zhou Y Li C Li Y Jiang Y Huang Z Liang J Shu R 《Microbiology and immunology》2010,54(11):702-706
DGGE of 16S rDNA is one of the most frequently used methods to study microbial communities. In this study, the DGGE profiles of different 16S rDNA regions of the periodontal pathogens Porphyromonas gingivalis, Fusobacterium nucleatum, and Prevotella nigrescens were investigated. The results suggested that V3-V5 and V6-V8 fragments may be suitable for community analysis of subgingival bacteria. Further analysis of subgingival samples with V3-V5 and V6-V8 regions as target fragments suggested that, in chronic periodontitis, re-colonization by periodontal bacteria with a population very similar to the baseline may occur by 6 weeks after mechanical debridement. 相似文献
15.
The ovine map is not yet well-developed, which represents a problem when looking for markers of a region of interest in sheep. A means of circumventing this is to use comparative mapping. In this study primers were determined using consensus sequences for the epidermal growth factor gene of humans, rats and mice, and an ovine epidermal growth factor gene fragment was amplified by polymerase chain reaction (PCR). A new set of specific ovine primers was chosen to study the polymorphism of this DNA fragment by denaturing gradient gel electrophoresis. Eighty-four individuals belonging to seven sheep breeds were studied with this technique and four alleles were detected. The heterozygosity rate was 0.57. Family analysis showed mendelian inheritance of the alleles. Usually, genetic analysis of type-I loci used in the comparative mapping is based on the detection of restriction fragment length polymorphisms in sheep DNA using cDNA probes from other species. Our work shows that another method, based on PCR and denaturing gradient gel electrophoresis techniques, can be efficiently used. 相似文献
16.
Holben WE Feris KP Kettunen A Apajalahti JH 《Applied and environmental microbiology》2004,70(4):2263-2270
Effectively and accurately assessing total microbial community diversity is one of the primary challenges in modern microbial ecology. This is particularly true with regard to the detection and characterization of unculturable populations and those present only in low abundance. We report a novel strategy, GC fractionation combined with denaturing gradient gel electrophoresis (GC-DGGE), which combines mechanistically different community analysis approaches to enhance assessment of microbial community diversity and detection of minority populations of microbes. This approach employs GC fractionation as an initial step to reduce the complexity of the community in each fraction. This reduced complexity facilitates subsequent detection of diversity in individual fractions. DGGE analysis of individual fractions revealed bands that were undetected or only poorly represented when total bacterial community DNA was analyzed. Also, directed cloning and sequencing of individual bands from DGGE lanes corresponding to individual G+C fractions allowed detection of numerous phylotypes that were not recovered using a traditional random cloning and sequencing approach. 相似文献
17.
A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus 总被引:1,自引:0,他引:1
In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples. 相似文献
18.
Apolipoprotein distribution in human lipoproteins separated by polyacrylamide gradient gel electrophoresis 总被引:3,自引:0,他引:3
The heterogeneity of serum lipoproteins (excluding very low density (VLDL) and intermediate density (IDL) lipoproteins) and that of lipoproteins secreted by HepG2 cells has been studied by immunoblot analysis of the apolipoprotein composition of the particles separated by polyacrylamide gradient gel electrophoresis (GGE) under nondenaturing conditions. The reactions of antibodies to apoA-I, apoA-II, apoE, apoB, apoD, and apoA-IV have revealed discrete bands of particles which differ widely in size and apolipoprotein composition. GGE of native serum lipoproteins demonstrated that apoA-II is present in lipoproteins of limited size heterogeneity (apparent molecular mass 345,000 to 305,000) and that apoB is present in low density lipoproteins (LDL) and absent from all smaller or denser lipoproteins. In contrast, serum apoA-I, E, D, and A-IV are present in very heterogeneous particles. Serum apoA-I is present mainly in particles of 305 to 130 kDa where it is associated with apoA-II, and in decreasing order of immunoreactivity in particles of 130-90 kDa, 56 kDa, 815-345 kDa, and finally within the size range of LDL, all regions where there is little detectable apoA-II. Serum apoE is present in three defined fractions, one within the size range of LDL, one containing heterogeneous particles between 640 and 345 kDa, and one defined fraction at 96 kDa. Serum apoD is also present in three defined fractions, one comigrating with LDL, one containing heterogeneous particles between 390 and 150 kDa, and one band on the migration front. Most of serum apoA-IV is contained in a band comigrating with albumin. GGE of centrifugally prepared LDL shows the presence of apoB, apoE, and apoD, but not that of apoA-I. However, the particles containing apoA-I, which, in serum, migrated within the LDL size range and as bands of 815 to 345 kDa, were recovered upon centrifugation in the d greater than 1.21 g/ml fraction. GGE of high density lipoproteins (HDL) indicated that most of apoA-I, A-II, and A-IV were present in lipoproteins of the same apparent molecular mass (390-152 kDa). ApoD tended to be associated with large HDL, and this was also significant for HDL apoE, which is present in lipoproteins ranging from 640 to 275 kDa. GGE of very high density lipoproteins (VHDL) presented some striking features, one of which was the occurrence of apolipoproteins in very discrete bands of different molecular mass. ApoA-II was bimodally distributed at 250-175 kDa and 175-136 kDa, the latter fraction also containing apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
19.
Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. 总被引:6,自引:12,他引:6
下载免费PDF全文

Previous studies investigating microbial diversity in the Octopus Spring cyanobacterial mat community (Yellowstone National Park) have shown a discrepancy between bacterial populations observed by molecular retrieval and cultivation techniques. To investigate how selective enrichment culture techniques affect species composition, we used denaturing gradient gel electrophoresis (DGGE) separation of PCR-amplified 16S rRNA gene fragments to monitor the populations contained within enrichment cultures of aerobic chemoorganotrophic bacteria from the ca. 50 degrees C region of the mat community. By varying the degree of dilution of the inoculum, medium composition, and enrichment conditions and duration and by analyzing the cultures by DGGE, we detected 14 unique 16S rRNA sequence types. These corresponded to alpha-, beta-, gamma-, and delta-proteobacteria, Thermus relatives, and gram-positive bacteria with high G + C ratio and, at the highest inoculum dilutions, Chloroflexus aurantiacus relatives, which were estimated to still be approximately 300 times less abundant than cells of the mat primary producer, Synechococcus spp. Only three of these populations were previously cultivated on solidified medium after similar enrichment. Only two of these population have 16S rRNA sequences which were previously cloned directly from the mat. These results reveal a diversity of bacterial populations in enrichment culture which were not detected by either molecular retrieval or strain purification techniques. 相似文献
20.
Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis 总被引:20,自引:0,他引:20
Satokari RM Vaughan EE Akkermans AD Saarela M de Vos WM 《Applied and environmental microbiology》2001,67(2):504-513
We describe the development and validation of a method for the qualitative analysis of complex bifidobacterial communities based on PCR and denaturing gradient gel electrophoresis (DGGE). Bifidobacterium genus-specific primers were used to amplify an approximately 520-bp fragment from the 16S ribosomal DNA (rDNA), and the fragments were separated in a sequence-specific manner in DGGE. PCR products of the same length from different bifidobacterial species showed good separation upon DGGE. DGGE of fecal 16S rDNA amplicons from five adult individuals showed host-specific populations of bifidobacteria that were stable over a period of 4 weeks. Sequencing of fecal amplicons resulted in Bifidobacterium-like sequences, confirming that the profiles indeed represent the bifidobacterial population of feces. Bifidobacterium adolescentis was found to be the most common species in feces of the human adult subjects in this study. The methodological approach revealed intragenomic 16S rDNA heterogeneity in the type strain of B. adolescentis, E-981074. The strain was found to harbor five copies of 16S rDNA, two of which were sequenced. The two 16S rDNA sequences of B. adolescentis E-981074(T) exhibited microheterogeneity differing in eight positions over almost the total length of the gene. 相似文献