首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conover MS  Mishra M  Deora R 《PloS one》2011,6(2):e16861
Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.  相似文献   

2.
Aims: This study detected and characterized the extracellular DNA (eDNA) in the biofilm extracellular polymeric substance (EPS) matrix of Helicobacter pylori and investigated the role of such component in the biofilm development. Methods and Results: Extracellular DNA was purified and characterized in a 2‐day‐old mature biofilm developed by the reference strain H. pylori ATCC 43629, the clinical isolate H. pylori SDB60 and the environmental strain H. pylori MDC1. Subsequently, the role of eDNA in the H. pylori biofilm was evaluated by adding DNase I during biofilm formation and on mature biofilms. Extracellular DNA was detected in the 2‐day‐old EPS biofilm matrix of all analysed H. pylori strains. The DNA fingerprintings, performed by RAPD analysis, on eDNA and intracellular DNA (iDNA), showed some remarkable differences. The data obtained by microtitre biofilm assay as well as colony forming unit count and CLSM (confocal laser scanning microscopy) qualitative analysis did not show any significant differences between the DNase I‐treated biofilms and the corresponding not treated controls both in formation and on mature biofilms. Conclusions: In this study, we provide evidence that eDNA is a component of the EPS matrix of H. pylori biofilm. The different profiles of eDNA and iDNA indicate that lysed cells are not the primary source of eDNA release, suggesting that other active mechanisms might be involved in this process. Moreover, the biomass assay suggests that eDNA may not be the main component of biofilm matrix, suggesting that it could be primarily involved in other mechanisms such as recombination processes, via transformation, contributing to the wide genomic variability of this micro‐organism defined as a ‘quasi‐species’. Significance and Impact of the Study: The presence of eDNA in H. pylori biofilm can contribute to the active dynamic exchange of information aimed to reach the best condition for the bacterial survival in the host and in the environment.  相似文献   

3.
4.
Mycobacterium avium subsp. hominissuis is an opportunistic pathogen that is associated with biofilm-related infections of the respiratory tract and is difficult to treat. In recent years, extracellular DNA (eDNA) has been found to be a major component of bacterial biofilms, including many pathogens involved in biofilm-associated infections. To date, eDNA has not been described as a component of mycobacterial biofilms. In this study, we identified and characterized eDNA in a high biofilm-producing strain of Mycobacterium avium subsp. hominissuis (MAH). In addition, we surveyed for presence of eDNA in various MAH strains and other nontuberculous mycobacteria. Biofilms of MAH A5 (high biofilm-producing strain) and MAH 104 (reference strain) were established at 22°C and 37°C on abiotic surfaces. Acellular biofilm matrix and supernatant from MAH A5 7 day-old biofilms both possess abundant eDNA, however very little eDNA was found in MAH 104 biofilms. A survey of MAH clinical isolates and other clinically relevant nontuberculous mycobacterial species revealed many species and strains that also produce eDNA. RAPD analysis demonstrated that eDNA resembles genomic DNA. Treatment with DNase I reduced the biomass of MAH A5 biofilms when added upon biofilm formation or to an already established biofilm both on abiotic surfaces and on top of human pharyngeal epithelial cells. Furthermore, co-treatment of an established biofilm with DNase 1 and either moxifloxacin or clarithromycin significantly increased the susceptibility of the bacteria within the biofilm to these clinically used antimicrobials. Collectively, our results describe an additional matrix component of mycobacterial biofilms and a potential new target to help treat biofilm-associated nontuberculous mycobacterial infections.  相似文献   

5.
Streptococcus pneumoniae colonizes the human upper respiratory tract, and this asymptomatic colonization is known to precede pneumococcal disease. In this report, chemically defined and semisynthetic media were used to identify the initial steps of biofilm formation by pneumococcus during growth on abiotic surfaces such as polystyrene or glass. Unencapsulated pneumococci adhered to abiotic surfaces and formed a three-dimensional structure about 25 microm deep, as observed by confocal laser scanning microscopy and low-temperature scanning electron microscopy. Choline residues of cell wall teichoic acids were found to play a fundamental role in pneumococcal biofilm development. The role in biofilm formation of choline-binding proteins, which anchor to the teichoic acids of the cell envelope, was determined using unambiguously characterized mutants. The results showed that LytA amidase, LytC lysozyme, LytB glucosaminidase, CbpA adhesin, PcpA putative adhesin, and PspA (pneumococcal surface protein A) mutants had a decreased capacity to form biofilms, whereas no such reduction was observed in Pce phosphocholinesterase or CbpD putative amidase mutants. Moreover, encapsulated, clinical pneumococcal isolates were impaired in their capacity to form biofilms. In addition, a role for extracellular DNA and proteins in the establishment of S. pneumoniae biofilms was demonstrated. Taken together, these observations provide information on conditions that favor the sessile mode of growth by S. pneumoniae. The experimental approach described here should facilitate the study of bacterial genes that are required for biofilm formation. Those results, in turn, may provide insight into strategies to prevent pneumococcal colonization of its human host.  相似文献   

6.
DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.  相似文献   

7.
Prophages are ubiquitous elements within bacterial chromosomes and affect host physiology and ecology in multiple ways. We have previously demonstrated that phage-induced lysis is required for extracellular DNA (eDNA) release and normal biofilm formation in Shewanella oneidensis MR-1. Here, we investigated the regulatory mechanisms of prophage λSo spatiotemporal induction in biofilms. To this end, we used a functional fluorescence fusion to monitor λSo activation in various mutant backgrounds and in response to different physiological conditions. λSo induction occurred mainly in a subpopulation of filamentous cells in a strictly RecA-dependent manner, implicating oxidative stress-induced DNA damage as the major trigger. Accordingly, mutants affected in the oxidative stress response (ΔoxyR) or iron homeostasis (Δfur) displayed drastically increased levels of phage induction and abnormal biofilm formation, while planktonic cells were not or only marginally affected. To further investigate the role of oxidative stress, we performed a mutant screen and identified two independent amino acid substitutions in OxyR (T104N and L197P) that suppress induction of λSo by hydrogen peroxide (H2O2). However, λSo induction was not suppressed in biofilms formed by both mutants, suggesting a minor role of intracellular H2O2 in this process. In contrast, addition of iron to biofilms strongly enhanced λSo induction and eDNA release, while both processes were significantly suppressed at low iron levels, strongly indicating that iron is the limiting factor. We conclude that uptake of iron during biofilm formation triggers λSo-mediated lysis of a subpopulation of cells, likely by an increase in iron-mediated DNA damage sensed by RecA.  相似文献   

8.
Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone‐like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.  相似文献   

9.
Aims: Extracellular polymeric substances (EPS) are an important component of microbial biofilms, and it is becoming increasingly apparent that extracellular DNA (eDNA) has a functional role in EPS. This study characterizes the eDNA extracted from the novel activated sludge biofilm process of aerobic granules. Methods and Results: Exposing the sludge to cation exchange resin (CER) was used for the extraction of eDNA and intracellular DNA (iDNA) from aerobic granules. This was optimized for eDNA yield while causing minimal cell lysis. We then compared the DNA composition of these extractions using randomly amplified polymorphic DNA (RAPD) fingerprinting and PCR‐based denaturing gradient‐gel electrophoresis (DGGE). Upon the analysis of the genomic DNA and the 16S rRNA genes, differences were detected between the sludge biofilm eDNA and iDNA. Conclusions: Different bacteria within the biofilm disproportionally release DNA into the EPS matrix of the biofilm. Significance and Impact of the Study: The findings further the idea that eDNA has a functional role in the biofilm state, which is an important conceptual information for industrial application of biofilms.  相似文献   

10.
Extracellular DNA (eDNA) was identified and characterized in a 2-day-old biofilms developed by Salmonella enterica ser. Typhimurium SR-11 and S. enterica ser. Typhi ST6 using confocal laser scanning microscopy (CLSM) and enzymatic extraction methods. Results of microtitre plate assay and CLSM analysis showed both Salmonella strains formed significantly more biofilms in the presence of DNase I; Furthermore, a remarkable decrease of biofilm formation was observed when eDNA was added in the inoculation. However, for the pre-established biofilms on polystyrene and glass, no significant difference was observed between the DNase I treated biofilm and the corresponding non-treated controls. In conclusion, these results demonstrate that eDNA is a novel matrix component of Salmonella biofilms. This is the first evidence for the presence of eDNA and its inhibitive and destabilizing effect during biofilm development of S. enterica ser. Typhimurium and S. enterica ser. Typhi on abiotic surfaces.  相似文献   

11.
Extracellular DNA in single- and multiple-species unsaturated biofilms   总被引:1,自引:0,他引:1  
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.  相似文献   

12.
Enterococcus faecium is an important nosocomial pathogen causing biofilm-mediated infections. Elucidation of E. faecium biofilm pathogenesis is pivotal for the development of new strategies to treat these infections. In several bacteria, extracellular DNA (eDNA) and proteins act as matrix components contributing to biofilm development. In this study, we investigated biofilm formation capacity and the roles of eDNA and secreted proteins for 83 E. faecium strains with different phylogenetic origins that clustered in clade A1 and clade B. Although there was no significant difference in biofilm formation between E. faecium strains from these two clades, the addition of DNase I or proteinase K to biofilms demonstrated that eDNA is essential for biofilm formation in most E. faecium strains, whereas proteolysis impacted primarily biofilms of E. faecium clade A1 strains. Secreted antigen A (SagA) was the most abundant protein in biofilms from E. faecium clade A1 and B strains, although its localization differed between the two groups. sagA was present in all sequenced E. faecium strains, with a consistent difference in the repeat region between the clades, which correlated with the susceptibility of biofilms to proteinase K. This indicates an association between the SagA variable repeat profile and the localization and contribution of SagA in E. faecium biofilms.  相似文献   

13.
During the first 6 hr of sporulation, infection of Bacillus subtilis by by phi105 wild type or the clear-plaque mutant phi105 c30 was nonproductive, but phage DNA was trapped inside developing spores. After infection with either wild-type or mutant phage at early times of sporulation (T1-T3), phage DNA entered the developing spores in a heat-stable form, which may represent integration of the phage DNA into the host chromosome. Phage DNA in carrier spores produced by infection at later times (T4-T6) was much more heat sensitive. Spore preparations containing either phi105 wild type or phi105 c30 carrier spores gave rise to a spontaneous burst of phage during outgrowth, although the fraction of carried wild-type phage that chose lysis over lysogeny at germination has not been determined. Heat induction of the thermoinducible lysogen 3610 (phi105 cts23) was also abortive during sporulation. Furthermore, induction neither prevented eventual spore formation nor resulted in the conversion of prophage DNA to the carrier state; during outgrowth, the previously induced lysogenic spores remained stable lysogens. However, if the sporulating lysogenic cells were plated immediately after induction, they did not form colonies at high efficiency, as though transfer to fresh medium allowed sufficient phage expression to kill the host.  相似文献   

14.
Extracellular DNA in Single- and Multiple-Species Unsaturated Biofilms   总被引:9,自引:2,他引:7  
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.  相似文献   

15.
P4 is a satellite phage of P2 and is dependent on phage P2 gene products for virion assembly and cell lysis. Previously, we showed that a virulent mutant of phage P4 (P4 vir1) could be used as a multicopy, autonomously replicating plasmid vector in Escherichia coli and Klebsiella pneumoniae in the absence of the P2 helper. In addition to establishing lysogeny as a self-replicating plasmid, it has been shown that P4 can also lysogenize E. coli via site-specific integration into the host chromosome. In this study, we show that P4 also integrates into the K. pneumoniae chromosome at a specific site. In contrast to that in E. coli, however, site-specific integration in K. pneumoniae does not require the int gene of P4. We utilized the alternative modes of P4 lysogenization (plasmid replication or integration) to construct cloning vectors derived from P4 vir1 that could exist in either lysogenic mode, depending on the host strain used. These vectors carry an amber mutation in the DNA primase gene alpha, which blocks DNA replication in an Su- host and allows the selection of lysogenic strains with integrated prophages. In contrast, these vectors can be propagated as plasmids in an Su+ host where replication is allowed. To demonstrate the utility of this type of vector, we show that certain nitrogen fixation (nif) genes of K. pneumoniae, which otherwise inhibit nif gene expression when present on multicopy plasmids, do not exhibit inhibitory effects when introduced as merodiploids via P4 site-specific integration.  相似文献   

16.
Apparent competition between species is believed to be one of the principal driving forces that structure ecological communities, although the precise mechanisms have yet to be characterized. Here we develop a model system that isolates phage-mediated interactions by neutralizing resource competition with a large excess of nutrients, and consists of two genetically identical Bordetella strains that differ only in that one is the carrier of phage and the other is susceptible to the phage. We observe and quantify the competitive advantage of the bacterial strain bearing the prophage in both invading and in resisting invasion by the bacterial strain sensitive to the phage, and use our experimental measurements to develop a mathematical model of phage-mediated competition. The model predicts, and experimental evidence confirms, that the competitive advantage conferred by the lysogenic phage depends only on the phage pathology on the sensitive bacterial strain and is independent of other phage and host parameters, such as the infection-causing contact rate, the spontaneous and infection-induced lysis rates and the phage burst size. This work combines experimental and mathematical approaches to the study of phage-driven competition, and provides an experimentally tested framework for evaluation of the effects of pathogens/parasites on interspecific competition.  相似文献   

17.
Bacterial adhesion and biofilm formation are both dependent on the production of extracellular polymeric substances (EPS) mainly composed of polysaccharides, proteins, lipids, and extracellular DNA (eDNA). eDNA promotes biofilm establishment in a wide range of bacterial species. In Pseudomonas aeruginosa eDNA is major component of biofilms and is essential for biofilm formation and stability. In this study we report that production of pyocyanin in P. aeruginosa PAO1 and PA14 batch cultures is responsible for promotion of eDNA release. A phzSH mutant of P. aeruginosa PAO1 that overproduces pyocyanin displayed enhanced hydrogen peroxide (H2O2) generation, cell lysis, and eDNA release in comparison to its wildtype strain. A ΔphzA-G mutant of P. aeruginosa PA14 deficient in pyocyanin production generated negligible amounts of H2O2 and released less eDNA in comparison to its wildtype counterpart. Exogenous addition of pyocyanin or incubation with H2O2 was also shown to promote eDNA release in low pyocyanin producing (PAO1) and pyocynain deficient (PA14) strains. Based on these data and recent findings in the biofilm literature, we propose that the impact of pyocyanin on biofilm formation in P. aeruginosa occurs via eDNA release through H2O2 mediated cell lysis.  相似文献   

18.
Burkholderia mallei-specific phage PhiE125 encodes DNA methyltransferases in both the lysogenic and replication modules within its genome. Characterization of DNA methylation in recombinant systems, specifically in PhiE125 lysogenic strains of B. mallei and Burkholderia thailandensis, revealed that, upon induction, cytosine methylation was targeted specifically to the phage episome but not the phage provirus or the host chromosome.  相似文献   

19.
Bacteriophages are a common and constant threat to proper milk fermentation. It has become evident that lysogeny is widespread in lactic acid bacteria, and in this work the temperate lactococcal bacteriophage phi LC3 was used as a model to study prophage stability in lactococci. The stability was analyzed in six phi LC3 lysogenic Lactococcus lactis subsp. cremoris host strains when they were growing at 15 and 30 degrees C. In order to perform these analyses, a real-time PCR assay was developed. The stability of the phi LC3 prophage was found to vary with the growth phase of its host L. lactis IMN-C1814, in which the induction rate increased during the exponential growth phase and reached a maximum level when the strain was entering the stationary phase. The maximum spontaneous induction frequency of the phi LC3 prophage varied between 0.32 and 9.1% (28-fold) in the six lysogenic strains. No correlation was observed between growth rates of the host cells and the spontaneous prophage induction frequencies. Furthermore, the level of extrachromosomal phage DNA after induction of the prophage varied between the strains (1.9 to 390%), and the estimated burst sizes varied up to eightfold. These results show that the host cells have a significant impact on the lytic and lysogenic life styles of temperate bacteriophages. The present study shows the power of the real-time PCR technique in the analysis of temperate phage biology and will be useful in work to reveal the impact of temperate phages and lysogenic bacteria in various ecological fields.  相似文献   

20.
Streptococcus mutans-derived exopolysaccharides are virulence determinants in the matrix of biofilms that cause caries. Extracellular DNA (eDNA) and lipoteichoic acid (LTA) are found in cariogenic biofilms, but their functions are unclear. Therefore, strains of S. mutans carrying single deletions that would modulate matrix components were used: eDNA – ?lytS and ?lytT; LTA – ?dltA and ?dltD; and insoluble exopolysaccharide – ΔgtfB. Single-species (parental strain S. mutans UA159 or individual mutant strains) and mixed-species (UA159 or mutant strain, Actinomyces naeslundii and Streptococcus gordonii) biofilms were evaluated. Distinct amounts of matrix components were detected, depending on the inactivated gene. eDNA was found to be cooperative with exopolysaccharide in early phases, while LTA played a larger role in the later phases of biofilm development. The architecture of mutant strains biofilms was distinct (vs UA159), demonstrating that eDNA and LTA influence exopolysaccharide distribution and microcolony organization. Thus, eDNA and LTA may shape exopolysaccharide structure, affecting strategies for controlling pathogenic biofilms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号