首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Cardiovascular and cerebrovascular disorders are well known to be associated with stress related behaviors. Stress enhances excretion of adrenaline, which is deaminated by monoamine oxidase and methylamine is formed. This product can be further deaminated by semicarbazide-sensitive amine oxidase (SSAO) and converted to toxic formaldehyde, hydrogen peroxide and ammonia. SSAO is located in the cardiovascular smooth muscles and circulated in the blood. We investigated whether formaldehyde can be derived from adrenaline in vivo. Methylamine was confirmed to be a product of adrenaline catalyzed by type A monoamine oxidase (MAO-A). Irreversible and long-lasting radioactive residual activity was detected in different tissues following administration of 1-[N-methyl-3H]-adrenaline. Such irreversible linkage could be blocked by selective MAO-A or SSAO inhibitors. Endothelial cells are quite sensitive to formaldehyde and relatively resistant to hydrogen peroxide. It is possible that stimulation of adrenaline excretion by chronic stress could increase the levels of circulatory formaldehyde. Such chronic formaldehyde stress may be involved in the initiation of endothelial injury and subsequently angiopathy.  相似文献   

2.
Obata T 《Life sciences》2006,79(5):417-422
The enzyme of semicarbazide-sensitive amine oxidase (SSAO) activity has been reported to be elevated in blood from diabetic patients. SSAO are widely distributed in plasma membranes of various tissues and blood plasma. SSAO-mediated production of toxic aldehydes has been proposed to be related to pathophysiological conditions. Cytotoxic metabolites by SSAO may cause endothelial injury and subsequently induce atherosclerosis. The precise physiological functions of SSAO could play an important role in the control of energy balance in adipose tissue. It is possible that the increased SSAO activity in diabetes may be a result of up-regulation due to increase of SSAO substrates, such as methylamine or aminoacetone. SSAO could play an important role in the regulation of adipocyte homeostasis. Inhibition of SSAO could be of therapeutic value for treatment of diabetic patient.  相似文献   

3.
4.
Various mammalian tissues contain membrane-bound amine oxidase termed semicarbazide-sensitive amine oxidase (SSAO). A variety of compounds has been identified as relatively selective SSAO inhibitors, but those inhibitors currently available also inhibit monoamine oxidase (MAO). In the present study, inhibitory properties of 2-bromoethylamine (2-BEA) and 3-bromopropylamine (3-BPA) toward rat lung-bound SSAO have been studied. Regardless of preincubation, 2-BEA could not appreciably inhibit MAO-A and MAO-B activity, but 3-BPA at relatively high concentrations inhibited only MAO-B activity. 3-BPA was a competitive and reversible SSAO inhibitor with a Ki value of 17 microM regardless of preincubation. In contrast, without preincubation, 2-BEA competitively inhibited SSAO activity with the Ki value of 2.5 microM and after preincubation, the mode of inhibition changed to be noncompetitive, indicating irreversible inhibition after the preincubation. Dialysis experiments with 2-BEA-pretreated homogenate resulted in no recovery of SSAO activity even after overnight dialysis. A decreased rate of SSAO inhibition under N2 atmosphere to that obtained under O2 was produced upon preincubation of enzyme with 2-BEA, suggesting that oxidized intermediate was necessary for its inhibitory activity. Thus, 2-BEA first interacts with SSAO to form a reversible complex with a subsequent reaction, leading this complex to the covalently bound enzyme-inhibitor adduct. The data analyzed by the plot of 1/k' vs 1/2-BEA concentrations intersected on the y-axis indicate that the inhibition by 2-BEA is not mediated by a bimolecular reaction; thus it is not an affinity-labeling agent, but a suicide SSAO inhibitor. 2-BEA may be employed as a useful compound in the studying SSAO.  相似文献   

5.
Various mammalian tissues contain a tissue-bound amine oxidizing enzyme distinct from mitochondrial outer membrane enzyme, monoamine oxidase (MAO, EC 1.4.3.4), termed semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6). An increase in SSAO activity was found in patients suffering from vascular disorders such as diabetes and diabetic complications. It has previously been shown that 2-bromoethylamine (2-BEA) is a potent, and selective suicidal inhibitor of tissue-bound SSAO. The aim of this study was to investigate the interaction of this suicidal SSAO inhibitor with the tissue-bound enzyme in guinea pig lung, kidney, stomach, and heart homogenates. The conditions necessary for this inhibitor to titrate the concentrations of this enzyme were also determined. 2-BEA appears to interact with SSAO, as reported previously for this enzyme from different sources, in a manner consistent with an irreversible, "suicide" reaction. Because of this property, 2-BEA could be used to titrate the concentrations of SSAO active centers in these tissues under the appropriate conditions employed. Although some possible non-specific binding of the inhibitor to sites other than the active center of the enzyme, metabolism of this inhibitor and/or presence of enzyme subtypes was hypothesized, the molecular characteristics of SSAO in these tissues (Km, Vmax values, enzyme efficiencies, approximate enzyme concentrations, and molecular turnover numbers) towards the substrate kynuramine (0.1 mM) at pH 7.4 and 37 degrees C have been estimated.  相似文献   

6.
Semicarbazide-sensitive amine oxidase (SSAO), identical to primary amine oxidase or vascular adhesion protein-1, is a membrane enzyme that generates hydrogen peroxide. SSAO is highly expressed at the adipocyte surface, and its plasma levels increase with type 2 diabetes. Since visceral adipose tissue (AT) is more tightly associated with obesity complications than subcutaneous (SC) abdominal fat, we compared SSAO activity in plasma and 4 distinct AT locations in 48 severely obese women (body mass index (BMI), averaging 54 ± 11 kg/m2), with or without a dysmetabolic profile. Higher glucose and triacylglycerol levels vs lower high-density lipoprotein (HDL)-cholesterol characterized dysmetabolic women (DYS; n = 25) from non-dysmetabolic (NDYS; n = 23), age- and weight-matched subjects. SC, mesenteric (ME), omental (OM), and round ligament (RL) fat locations were collected during bariatric surgery. SSAO capacity to oxidize up to 1 mM benzylamine was determined in AT and plasma with radiometric and fluorimetric methods. Plasma SSAO was higher in the DYS group. SSAO activity was higher in fat than in plasma, when expressed as radiolabeled benzaldehyde per milligram of protein. In ATs from DYS women, protein content was 10 % higher, and basal hydrogen peroxide release lower than in NDYS subjects, except for RL location. The SSAO affinity towards benzylamine did not exhibit regional variation and was not altered by a dysmetabolic profile (K m averaging 184 ± 7 μM; n = 183). Although radiometric and fluorimetric methods gave different estimates of oxidase activity, both indicated that AT SSAO activity did not vary according to anatomical location and/or metabolic status in severely obese women.  相似文献   

7.
Ischemic preconditioning (IP) has been shown to protect the lung against ischemia-reperfusion (I/R) injury. Although the production of reactive oxygen species (ROS) has been postulated to play a crucial role in I/R injury, the sources of these radicals in I/R and the mechanisms of protection in IP remain unknown. Since it was postulated that deamination of endogenous and exogenous amines by semicarbazide-sensitive amine oxidase (SSAO) in tissue damage leads to the overproduction of hydrogen peroxide (H2O2), we investigated the possible contribution of tissue SSAO to excess ROS generation and lipid peroxidation during I/R and IP of the lung. Male Wistar rats were randomized into 6 groups: control lungs were subjected to 30 min of perfusion in absence and presence of SSAO inhibitor, whereas the lungs of the I/R group were subjected to 2 h of cold ischemia following the 30 min of perfusion in absence and presence of SSAO inhibitor. IP was performed by two cycles of 5 min ischemia followed by 5 min of reperfusion prior to 2 h of hypothermic ischemia in absence and presence of SSAO inhibitor. Lipid peroxidation, reduced (GSH) and oxidized (GSSG) glutathione levels, antioxidant enzyme activities, SSAO activity, and H2O2 release were determined in tissue samples of the study groups. Lipid peroxidation, glutathione disulfide (GSSG) content, SSAO activity and H2O2 release were increased in the I/R group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were decreased. SSAO activity, H2O2 release, GSSG content and lipid peroxidation were markedly decreased in the IP group, whereas GSH content, GSH/GSSG ratio and antioxidant enzyme activities were significantly increased. SSAO activity was found to be positively correlated with H2O2 production in all study groups. Increased lipid peroxidation, SSAO activity, GSSG and H2O2 contents as well as decreased GSH and antioxidant enzyme levels in I/R returned to their basal levels when IP and SSAO inhibition were applied together. The present study suggests that application of IP and SSAO inhibition together may be more effective than IP alone against I/R injury in the lung.  相似文献   

8.
Using3H-labeled rat brain mature RNA as substrate, substantial ribonuclease activity was detected in homogenates of rat superior cervical ganglia with acidic (pH 5.5) and neutral (pH 7.0-7.5) optima. Very little activity could be measured at greater than pH 8. The acidic and neutral activities differed in the optimal conditions required for assay, and showed differential sensitivity to the sulfhydryl blocking agent, N-ethylmaleimide. Only the neutral activity was stimulated, optimally by 2 mM N-ethylmaleimide, and the magnitude of stimulation indicated that the contributing ribonucleases exist largely in a latent form in the ganglion. Ribonucleases in other tissues with neutral pH dependence, known usually as alkaline ribonucleases, are subject to an N-ethylmaleimide-sensitive endogenous inhibitor protein. The existence of a similar inhibitor in rat superior cervical ganglia was indicated by the latency of neutral ribonuclease activity and confirmed by observing the effect of a soluble fraction from the ganglia on the activity of pancreatic ribonuclease A.  相似文献   

9.

Background

Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS) following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O2 ), and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI.

Methodology/Principal Findings

The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24–96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O2 induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer''s disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI.

Conclusions/Significance

As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.  相似文献   

10.
Increase in methylglyoxal is thought to be involved in different pathological conditions. Deamination of aminoacetone by semicarbazide-sensitive amine oxidase (SSAO) leads to production of methylglyoxal. We have synthesized aminoacetone and developed a novel HPLC procedure for its quantitative determination. The urinary excretion of aminoacetone is approximately 20-30 microg/mouse/day, and the concentration is about 0.5 microg/g in mouse liver and small intestine. SSAO inhibitor increases aminoacetone levels in both tissues and urines. Results confirm that aminoacetone is an endogenous substrate for SSAO. However, data also indicate that deamination is not the only catabolic pathway for aminoacetone.  相似文献   

11.
To evaluate if endogenous extracellular adenosine influences sodium channel activity in nerve terminals, we investigated how manipulations of extracellular adenosine levels influence 22Na uptake by rat brain synaptosomes stimulated with veratridine (VT). To decrease extracellular adenosine levels, adenosine deaminase (ADA) that converts adenosine into an inactive metabolite was used. To increase extracellular adenosine levels, we used the adenosine deaminase inhibitor erythro-9(2-hydroxy-3-nonyl) adenine (EHNA), as well as the inhibitor of adenosine transport, nitrobenzylthioinosine (NBTI). ADA (0.1–5U/ml) caused an excitatory effect on 22Na uptake stimulated by veratridine, which was abolished in the presence of the adenosine deaminase inhibitor erythro-9(2-hydroxy-3-nonyl) adenine (EHNA, 25M). Both the adenosine uptake inhibitor nitrobenzylthioinosine (NBTI, 1–10M) and the adenosine deaminase inhibitor EHNA (10–25M) inhibited 22Na uptake by rat brain synaptosomes. It is suggested that adenosine is tonically inhibiting sodium uptake by rat brain synaptosomes.  相似文献   

12.

Background and purpose

The persistent influx of neutrophils into the lung and subsequent tissue damage are characteristics of COPD, cystic fibrosis and acute lung inflammation. VAP-1/SSAO is an endothelial bound adhesion molecule with amine oxidase activity that is reported to be involved in neutrophil egress from the microvasculature during inflammation. This study explored the role of VAP-1/SSAO in neutrophilic lung mediated diseases and examined the therapeutic potential of the selective inhibitor PXS-4728A.

Methods

Mice treated with PXS-4728A underwent intra-vital microscopy visualization of the cremaster muscle upon CXCL1/KC stimulation. LPS inflammation, Klebsiella pneumoniae infection, cecal ligation and puncture as well as rhinovirus exacerbated asthma models were also assessed using PXS-4728A.

Results

Selective VAP-1/SSAO inhibition by PXS-4728A diminished leukocyte rolling and adherence induced by CXCL1/KC. Inhibition of VAP-1/SSAO also dampened the migration of neutrophils to the lungs in response to LPS, Klebsiella pneumoniae lung infection and CLP induced sepsis; whilst still allowing for normal neutrophil defense function, resulting in increased survival. The functional effects of this inhibition were demonstrated in the RV exacerbated asthma model, with a reduction in cellular infiltrate correlating with a reduction in airways hyperractivity.

Conclusions and implications

This study demonstrates that the endothelial cell ligand VAP-1/SSAO contributes to the migration of neutrophils during acute lung inflammation, pulmonary infection and airway hyperractivity. These results highlight the potential of inhibiting of VAP-1/SSAO enzymatic function, by PXS-4728A, as a novel therapeutic approach in lung diseases that are characterized by neutrophilic pattern of inflammation.  相似文献   

13.
Oxygen free radical formation has been implicated in lesions caused by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and iron. Although MPTP produces a parkinsonian syndrome after its conversion to 1-methyl-4-phenylpyridine (MPP+) by type B monoamine oxidase (MAO) in the brain, the etiology of this disease remains obscure. This review focuses on the role of an environmental neurotoxin chemically related to MPP+-induced free radical generation in the pathogenesis of Parkinson's disease. Environmental-like chemicals, such as para-nonylphenol or bisphenol A, significantly stimulated hydroxyl radical (OH) formation in the striatum. Allopurinol, a xanthine oxidase inhibitor, prevents para-nonylphenol and MPP+-induced OH generation. Tamoxifen, a synthetic nonsteroidal antiestrogen, suppressed the OH generation via dopamine efflux induced by MPP+. These results confirm that free radical production might make a major contribution at certain stages in the progression of the injury. Such findings may be useful in elucidating the actual mechanism of free radical formation in the pathogenesis of neurodegenerative brain disorders, including Parkinson's disease and traumatic brain injuries.  相似文献   

14.

Aims

Aristolochic acid (AA) nephrotoxicity is related to accumulation of methylglyoxal (MGO) and Nε-(carboxymethyl)lysine (CML) in the mouse kidney. We studied the activity of renal semicarbazide-sensitive amine oxidase (SSAO), a key enzyme involved in MGO generation, in AA-treated mice, and investigated nephroprotective effects produced by metformin, a MGO scavenger.

Methods

Mice were orally administered water or metformin for 15 days (12 or 24 mg kg− 1 day− 1), and injected AA (5 mg kg− 1 day− 1) intraperitoneally for 8 days starting on day 8. Renal function was studied, and histopathological examination, determination of renal SSAO activity, and measurement of MGO levels were performed.

Key findings

Compared to control mice, AA-injected mice showed significant renal damage and approximately 2.7-fold greater renal SSAO activity (p < 0.05). Further, compared to control treatment, administration of 12 mg/kg metformin inhibited formation of renal lesions, and significantly decreased renal MGO levels (37.33 ± 9.78 vs. 5.89 ± 2.64 μg/mg of protein, respectively, p < 0.01). In the AA-treated mice, metformin also inhibited the accumulation of CML in renal tubules, but did not affect SSAO activity.

Significance

This study is the first to show elevated renal SSAO activity in AA-treated mice, which could be involved in MGO accumulation. Moreover, MGO scavenging by metformin reduces AA nephrotoxicity. These findings suggest that reducing MGO accumulation produces nephroprotection, revealing new therapeutic strategies for the management. SSAO is a key enzyme involved in MGO generation, and consequently, inhibition of renal SSAO activity is worth investigating in AA nephrotoxicity and other renal pathologies further.  相似文献   

15.
16.
Treatment of bovine pulmonary smooth muscle cells with the TxA2 mimetic, U46619 stimulated [Ca2+]i, which was inhibited upon pretreatment with apocynin (NADPH oxidase inhibitor). Pretreatment with cromakalim (KV channel opener) or nifedepine (L-VOCC inhibitor) inhibited U46619 induced increase in [Ca2+]i, indicating a role of KV-LVOCC axis in this scenario. Neither cromakalim nor nifedepine inhibited U46619 induced increase in NADPH oxidase activity, suggesting that the NADPH oxidase activation is proximal to the KV-LVOCC axis in the cells. Pretreatment with calphostin C (PKC inhibitor) markedly reduced U46619 induced increase in NADPH oxidase activity and [Ca2+]i in the cells. Calphostin C pretreatment also markedly reduced p47phox phosphorylation and translocation to the membrane and association with p22phox, a component of Cyt.b558 of NADPH oxidase in the membrane. Overall, PKC plays an important role in NADPH oxidase derived O2-mediated regulation of KV-LVOCC axis leading to an increase in [Ca2+]i by U46619 in the cells.  相似文献   

17.

Background

Recent work by our laboratory and others has implicated NADPH oxidase as having an important role in reactive oxygen species (ROS) generation and neuronal damage following cerebral ischemia, although the mechanisms controlling NADPH oxidase in the brain remain poorly understood. The purpose of the current study was to examine the regulatory and functional role of the Rho GTPase, Rac1 in NADPH oxidase activation, ROS generation and neuronal cell death/cognitive dysfunction following global cerebral ischemia in the male rat.

Methodology/Principal Findings

Our studies revealed that NADPH oxidase activity and superoxide (O2 ) production in the hippocampal CA1 region increased rapidly after cerebral ischemia to reach a peak at 3 h post-reperfusion, followed by a fall in levels by 24 h post-reperfusion. Administration of a Rac GTPase inhibitor (NSC23766) 15 min before cerebral ischemia significantly attenuated NADPH oxidase activation and O2 production at 3 h after stroke as compared to vehicle-treated controls. NSC23766 also attenuated “in situ” O2 production in the hippocampus after ischemia/reperfusion, as determined by fluorescent oxidized hydroethidine staining. Oxidative stress damage in the hippocampal CA1 after ischemia/reperfusion was also significantly attenuated by NSC23766 treatment, as evidenced by a marked attenuation of immunostaining for the oxidative stress damage markers, 4-HNE, 8-OHdG and H2AX at 24 h in the hippocampal CA1 region following cerebral ischemia. In addition, Morris Water maze testing revealed that Rac GTPase inhibition after ischemic injury significantly improved hippocampal-dependent memory and cognitive spatial abilities at 7–9 d post reperfusion as compared to vehicle-treated animals.

Conclusions/Significance

The results of the study suggest that Rac1 GTPase has a critical role in mediating ischemia/reperfusion injury-induced NADPH oxidase activation, ROS generation and oxidative stress in the hippocampal CA1 region of the rat, and thus contributes significantly to neuronal degeneration and cognitive dysfunction following cerebral ischemia.  相似文献   

18.
Yu  Peter H. 《Neurochemical research》1998,23(9):1205-1210
Methylamine is a constituent of cigarette smoke and the major end product of nicotine metabolism. Smoking or nicotine can induce the release of adrenaline, which is in turn deaminated by monoamine oxidase, also producing methylamine. We found that the urinary level of methylamine was significantly elevated following administration of nicotine (25 mg/Kg, i.p.). Semicarbazide-sensitive amine oxidase (SSAO) inhibitors further increased the excretion of methylamine induced by nicotine. Following administration of L-(—)-[N-methyl-3H]nicotine long-lasting irreversible radioactive adducts were detected in different mouse tissues and such adduct formation could be blocked by selective SSAO inhibitors. These adducts are probably cross-linked oligoprotein complexes cross-linked by formaldehyde. The findings support the idea that nicotine can enhance SSAO/methylamine-mediated increase of formaldehyde and oxidative stress and this could in part contribute the adverse effect of health associated with smoking.  相似文献   

19.
We have previously reported that carp (Cyprinus carpio) tissue mitochondria contain a novel form of monoamine oxidase (MAO), which belongs neither to MAO-A nor to MAO-B of the mammalian enzyme. This conclusion results from the findings that the carp MAO was equally sensitive to a selective MAO-A inhibitor clorgyline and to the MAO-B selective inhibitor l-deprenyl, when tyramine, a substrate for both forms, serotonin or beta-phenylethylamine, a substrate for either A or B-form of mammalian MAO, was used. In the present study, we tried to detect another amine oxidase, termed tissue-bound semicarbazide-sensitive amine oxidase (SSAO), activity in carp tissues. As definition of SSAO was used, such as insensitivity to inhibition of the kynuramine oxidizing activity by an MAO inhibitor pargyline and high sensitivity to the SSAO inhibitor semicarbazide. The results indicated that the oxidizing activity was selectively and almost completely inhibited by 0.1 mM pargyline alone or a combination of 0.1 mM pargyline plus 0.1 mM semicarbazide, but not by 0.1 mM semicarbazide alone. We also tried to detect any SSAO activity by changing experimental conditions, such as lower incubation temperature, higher enzyme protein concentration, a lower substrate concentration and different pH's in the reaction, as the enzyme source. However, still no SSAO activity could be detected in the tissues. These results conclusively indicate that carp tissues so far examined do not contain SSAO activity.  相似文献   

20.
Hydroxyurea (HU, NH2CONHOH), or hydroxycarbamide, is a hydroxamic acid derivative used as a drug for anti-neoplasm and sickle-cell disease. In this study, HU was found to have antioxidant activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals and dose-dependent inhibitory activities against monoamine oxidase (MAO)-A, MAO-B, and semicarbazide-sensitive amine oxidase (SSAO) as compared to controls of clorgyline, deprenyl, and semicarbazide respectively. HU showed mixed-type, competitive-type, and competitive-type inhibition, respectively, with respect to substrates of MAO-A, MAO-B, and SSAO with apparent inhibition constants (Ki) of 19.46, 5.38, and 1.84 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号