首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The effect of EDTA-decalcification, reactivating and activating procedures on the hydrolysis of ATP was studied histochemically in developing dental tissues in the rat. The incubation media contained lead citrate at alkaline pH and lead nitrate at neutral pH, and the results with ATP as substrate were compared with those obtained with -glycerophosphate.The ion dependency of ATP hydrolysis could only be ascertained in decalcified sections. As in earlier studies on the hydrolysis of -glycerophosphate in dental tissues, this hydrolysis could readily be reactivated through preincubation of the sections in a series of 0.1 M solutions of divalent cations; Zn2+ being the most efficient. This treatment was now found also to give rise to an ATP hydrolysis, which occurred without the need for activating ions in the incubation medium. This ATP hydrolysis should thus be described as nonspecific and, in terms of ion dependency, as due to a metalloenzyme, i.e. alkaline phosphatase. Activating ion dependent ATP hydrolysis in the dental tissues was found in the blood vessels and in the apical part of the secretory ameloblasts. The former was activated by Mg2+, Ca2+ and Mn2+, and the latter by Ca2+ and -almost specifically—by Sr2+. Preincubation with Zn2+ always inhibited the ion dependant ATP hydrolysis in the dental tissues.  相似文献   

2.
Summary The purpose of this study was to try to differentiate histochemically between the various enzymes which may catalyze the hydrolysis of ATP in developing rat dental tissues. Freeze cut and freeze dried sections of molar and incisor teeth were incubated in lead capture-based media at pH 5.0, 7.2 or 9.4 with one of the following substrates: -glycerophosphate, AMP, ADP, ATP, AMP-PNP and tetrasodium pyrophosphate. To establish the enzymatic nature of the hydrolysis parallel sections were incubated after prior fixation in either formaldehyde or glutaraldehyde.By comparing the enzymatic stainings obtained with the various substrates and at the different pH: s, it was concluded that ATP can be visibly hydrolyzed in rat dental tissues by alkaline phosphatase (stratum intermedium, apical part of maturation ameloblasts, basal part of all ameloblasts, odontoblasts and subodontoblastic layer), specific ATPase (apical and basal parts of secretory ameloblasts) and ATP pyrophosphatase and/or adenylate cyclase (stratum intermedium, odontoblasts). Acid phosphatase, specific ADPase, 5-nucleotidase, inorganic pyrophosphatase, 3:5-cyclic-AMP-phosphodiesterase and adenylate kinase on the other hand, seem not to be engaged in the ATP hydrolysis to such a degree as to complicate the interpretation of the histochemical staining. The alkaline phosphatase part of the ATP hydrolysis appeared to be rather insensitive to aldehyde fixation, while the hydrolysis effected by specific ATPase and ATP pyrophosphatase and/or adenylate cyclase was extinguished after fixation with formaldehyde for 4 h or glutaraldehyde for 10 min.  相似文献   

3.
Purification and species distribution of rubisco activase   总被引:16,自引:8,他引:8       下载免费PDF全文
Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activase, a soluble chloroplast protein which promotes light-dependent rubisco activation, was partially purified from spinach chloroplasts by ion-exchange and gel-filtration fast protein liquid chromatography. The protein could also be isolated using rate zonal centrifugation in sucrose gradients followed by conventional ion-exchange on DEAE-cellulose. The active enzyme was composed of 44 and 41 kilodalton subunits. Antibodies to the activase polypeptides were produced in tumor-induced mouse ascites fluid and used as probes for activase on immunoblots of soluble proteins from a number of species. One or both of the activase polypeptides were recognized in all higher plant species examined including Arabidopsis thaliana, soybean, kidney bean, pea, tobacco, maize, oat, barley, celery, tomato, pigweed, purslane, dandelion, sorghum, and crabgrass. The polypeptides were not present in a mutant of Arabidopsis which is incapable of activating rubisco in vivo. The activase polypeptides were also detected in cell extracts of the green alga Chlamydomonas reinhardii. Activase activity, which had been demonstrated previously in wild-type Arabidopsis and in spinach, was measured in protoplast extracts of Nicotiana rustica. The results suggest that control of rubisco by activase may be an ubiquitous form of regulation in eucaryotic photosynthetic organisms.  相似文献   

4.
5.
Purification and assay of rubisco activase from leaves   总被引:18,自引:10,他引:8       下载免费PDF全文
Ribulose 1,5-bisphosphate carboxylase/oxygenase (rubisco) activase protein was purified from spinach leaves by ammonium sulfate precipitation and ion exchange fast protein liquid chromatography. This resulted in 48-fold purification with 70% recovery of activity and yielded up to 18 milligrams of rubisco activase protein from 100 grams of leaves. Based on these figures, the protein comprised approximately 2% by weight of soluble protein in spinach (Spinacia oleracea L.) leaves. The preparations were at least 95% pure and were stable when frozen in liquid nitrogen. Addition of ATP during purification and storage was necessary to maintain activity. Assay of rubisco activase was based on its ability to promote activation of rubisco in the presence of ribulose-1,5-bisphosphate. There was an absolute requirement for ATP which could not be replaced by other nucleoside phosphates. The initial rate of increase of rubisco activity and the final rubisco specific activity achieved were both dependent on the concentration of rubisco activase. The initial rate was directly proportional to the rubisco activase concentration and was used as the basis of activity. The rate of activation of rubisco was also dependent on the rubisco concentration, suggesting that the activation process is a second order reaction dependent on the concentrations of both rubisco and rubisco activase. It is suggested that deactivation of rubisco occurs simultaneously with rubisco activase-mediated activation, and that rubisco activation state represents a dynamic equilibrium between these two processes.  相似文献   

6.
7.
8.
The activation of purified ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) has been studied in the presence of sugar phosphates, and the effect of rubisco activase on this process determined. During an 11-minute time course at pH 7.7 and 11 micromolar CO2, the activation of rubisco was strongly inhibited by ribulose-1,5-bisphosphate (4 millimolar), fructose-1,6-bisphosphate (1 millimolar) and ribose 5-phosphate (5 millimolar), but this inhibition was overcome by the addition of rubisco activase and activation then proceeded to a greater extent than spontaneous activation of rubisco. Glycerate 3-phosphate (20 millomolar) slowed the initial rate but not the extent of activation and rubisco activase had no effect on this. The activation of rubisco was shown to be affected by phosphoenolpyruvate (3 millimolar) but not by creatine phosphate (3 millimolar) or ATP (3 millimolar), and the creatine-phosphate/creatine phosphokinase system was used to generate the high ATP/ADP quotients required for rubisco activase to function. ATP was shown to be required for the rubisco activase-dependent rubisco activation in the presence of fructose-1,6-bisphosphate (1 millimolar). It is concluded that rubisco activase has a mixed specificity for some sugar phosphate-bound forms of rubisco, but has low or no activity with others. Some possible bases for these differences among sugar phosphates are discussed but remain to be established.  相似文献   

9.
Decrease in rubisco activation at high CO2 concentration was caused by decrease in carbamylation of rubisco (Rohet al., 1996). However, it is unclear whether decrease in carbamylation rate at high CO2 concentration is due to decrease in activity itself or content of rubisco activase. To clarify this ambiguity, investigation was performed to determine effects of CO2 concentration on rubisco activase with kidney bean (Phaseolus vulgaris L.) leaves grown at normal CO2 (350 ppm) and high CO2 (650 ppm) concentration. The analysis of Western blotting showed that the 50 and 14.5 kl) polypeptides were identified immunochemically as the large and small subunits of rubisco in the preparation, respectively. For the 14.5 kD small subunit, the degree of intensity at high CO2 concentration was similar to that at normal CO2 concentration. For the 50 kD large sububit, however, the intensity of a band at high CO, concentration was significantly higher than that at normal CO2 concentration, indicating that only the large subunit is affected by high CO2 concentration. The analysis of Western immunoblotting showed two major polypeptides at 46 and 42 kD which were identified as rubisco activase subunits. The intensities of two bands were shown to be higher at normal CO2 than high CO2 concentration. These data indicate that decrease of carbamylation resulting from increase of CO2 concentration was caused by rubisco activase. Finally, by employing ATP hydrolysis assay and ELISA, we also observed a significant decrease in both activity and content of rubisco activase as CO2 concentration was raised from normal to high CO2 concentration. These results suggest that decrease in rubisco carbamylation at high CO2 concentration is caused by activity itself and/or content of rubisco activase.  相似文献   

10.
The present study was designed to evaluate the influence of salicylic acid (SA) on the growth of salt stress (sodium chloride) induced in tobacco plants. In addition, quantification of rubisco and rubisco activase contents of the plants was also determined in treatments with the control, 10−4 mM SA, 50 mM NaCl, 100 mM NaCl, 150 mM NaCl, SA + 50 mM NaCl, SA + 100 mM NaCl and SA + 150 mM NaCl, respectively after in vitro culture for 5 weeks. The growth of the tobacco plant decreased in 50 mM and 100 mM NaCl when not treated with SA. However, the growth was accelerated by SA, and the growth retardation caused by NaCl was improved by SA. The content of rubisco was improved by SA only in plants treated with 50 mM NaCl, and the activity of rubisco was increased by SA resulting in the decreased effect of NaCl, but only in 50 mM NaCl treated plants. The content of rubisco activase decreased due to NaCl, and SA did not improve the effect caused by NaCl. The activity of rubisco activase was increased by SA resulting in decreased activity caused by NaCl, but increased effect by SA was not recovered to the level of NaCl untreated plants. The activity of rubisco and rubisco activase, which decreased due to denaturing agents, did not demonstrate significant improvement when compared to the control.  相似文献   

11.
Rubisco activase is an AAA(+) protein, a superfamily with members that use a "Sensor 2" domain for substrate recognition. To determine whether the analogous domain of activase is involved in recognition of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), two chimeric activases were constructed, interchanging a Sensor 2-containing region between activases from spinach and tobacco. Spinach chimeric activase was a poor activator of both spinach and tobacco Rubisco. In contrast, tobacco chimeric activase activated spinach Rubisco far better than tobacco Rubisco, similar to spinach activase. A point mutation, K311D, in the Sensor 2 domain of the tobacco chimeric activase abolished its ability to better activate spinach Rubisco. The opposite mutation, D311K, in wild type tobacco activase produced an enzyme that activated both spinach and tobacco Rubisco, whereas a second mutation, D311K/L314V, shifted the activation preference toward spinach Rubisco. The involvement of these two residues in substrate selectivity was confirmed by introducing the analogous single and double mutations in cotton activase. The ability of the two tobacco activase mutants to activate wild type and mutant Chlamydomonas Rubiscos was also examined. Tobacco D311K activase readily activated wild type and P89R but not D94K Rubisco, whereas the tobacco L314V activase only activated D94K Rubisco. The tobacco activase double mutant D311K/L314V activated wild type Chlamydomonas Rubisco better than either the P89R or D94K Rubisco mutants, mimicking activation by spinach activase. The results identified a substrate recognition region in activase in which two residues may directly interact with two residues in Rubisco.  相似文献   

12.
13.
Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.), Arabidopsis thaliana, maize (Zea mays L.), and Chlamydomonas reinhardtii but supported only 10 to 35% activation of Rubisco from three Solanaceae species, tobacco (Nicotiana tabacum L.), petunia (Petunia hybrida L.), and tomato (Lycopersicon esculentum L.). Conversely, purified tobacco and petunia Rubisco activase catalyzed 75 to 100% activation of substrate-bound Rubisco from the three Solanacee species but only 10 to 25% activation of substrate-bound Rubisco from the other species. Thus, the interaction between substrate-bound Rubisco and Rubisco activase is species dependent. The species dependence observed is consistent with phylogenetic relationships previously derived from plant morphological characteristics and from nucleotide and amino acid sequence comparisons of the two Rubisco subunits. Species dependence in the Rubisco-Rubisco activase interaction and the absence of major anomalies in the deduced amino acid sequence of tobacco Rubisco activase compared to sequences in non-Solanaceae species suggest that Rubisco and Rubisco activase may have coevolved such that amino acid changes that have arisen by evolutionary divergence in one of these enzymes through spontaneous mutation or selection pressure have led to compensatory changes in the other enzyme.  相似文献   

14.
The effect of glutathione on the influences of heavy metals affecting rubisco and rubisco activase was studied in tobacco plants grown in vitro where the shoot explants of the tobacco plant cultured on MS medium under aseptic conditions and two explants were placed in the control, 0.1 mM GSH, 1 mM GSH, 0.2 mM Cd, 0.2 mM Cu, 0.2 mM Zn, and a mixture of Cd and GSH, Cu and GSH, Zn and GSH, respectively. The effect of GSH on the growth of the tobacco plant was minimal, but the heavy metals clearly retarded its growth. GSH recovered the growth retarded by heavy metals, and the concentration of GSH required to recover the growth differed depending on the heavy metals. The content of chlorophyll in the plant increased through GSH and Zn, and decreased through Cd and Cu. The chlorophyll content which decreased due to Cd and Cu was recovered by GSH, and the content which increased due to Zn was decreased by 1 mM GSH. The content of rubisco decreased due to GSH and heavy metals, and the content which decreased due to heavy metals was recovered by GSH, and when GSH was treated with Zn, the increased rate was maximum compared to other heavy metals. The activity of rubisco was increased due to GSH and heavy metals, and the activity increased by Cd and Zn decreased through GSH. In the case of Cu, the activity of GSH increased even more. There was no effect of GSH on the influences of heavy metals on the content and activity of rubisco activase. The activity of rubisco decreased by thiourea among six denaturing agents, and increased by l-cysteine, and in most cases the activity level was recorded as high. The activity of rubisco activase all decreased as a result of six denaturing agents, and the effect caused by EDTA and guanidine-HCl was the greatest, while the effect caused by l-cysteine and urea was minimal.  相似文献   

15.
Complex formation between ATP (adenosine 5′-triphosphate) and tn2COIII(aq) (tn = trimethylenediamine) and resulting hydrolysis of the ATP to ADP (adenosine 5′-diphosphate), AMP (adenosine 5′-monophosphate), PPi (pyrophosphate), and Pi (orthophosphate) have been examined by means of 31P nmr. With ATP ~0.1 M and tn2CoIII(aq) up to 0.3 M, complex formation was promoted by equilibrating solutions for a period at pH 4, after which hydrolysis was allowed to proceed at each of several pHs in the range 5 to 9 prior to quenching by addition of strong base. With ATP 0.01 M and tn2CoIII(aq) up to 0.08 M, the above procedure was followed in some cases; in other experiments the pH of each ATP/tn2CoIII(aq) solution was adjusted immediately to a value in the range 5 to 9 with the remainder of the procedure as before. In most cases the hydrolysis was at 25°C, but temperature dependence was also examined. The integrals for the β-phosphorus resonance have been used to analyze for ATP in the quenched solutions; independent measurements of ATP by an enzyme/spectrophotometric method (Bergmeyer) gave similar results. Cobalt to ATP molar ratios up to 1 produce tn2CoIIIATP as the predominant ATP complex; this 1:1 complex shows no detectable acceleration in hydrolysis compared to free ATP. Cobalt to ATP molar ratios of ?1 lead to complexes of type (tn2CoIII)2ATP and (tn2CoIII)3ATP, which exhibit greatly enhanced reactivity towards ATP hydrolysis. At a 2:1 molar ratio (0.1 or 0.01 M ATP), the enhancement is rate is ~105 at pH 7 where the rate is a maximum (comparison for 25°C); at higher molar ratios the rate enhancements are even greater. The results support the view that effective metal ion catalysis of ATP hydrolysis requires formation of reactive species involving more than one metal ion per ATP.  相似文献   

16.
17.
Mechanism of adenosine triphosphate hydrolysis by actomyosin   总被引:70,自引:0,他引:70  
R W Lymn  E W Taylor 《Biochemistry》1971,10(25):4617-4624
  相似文献   

18.
Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize. The recombinant precursor of this protein, pre-EF-Tu, has been found to exhibit chaperone activity and protect heat-labile proteins, such as citrate synthase and malate dehydrogenase, from thermal aggregation. Chloroplast EF-Tu is highly conserved and it is possible that the chaperone activity of this protein is not species-specific. In this study, we investigated the effect of native wheat pre-EF-Tu on thermal aggregation of rubisco activase. Additionally, we investigated the effect of native and recombinant maize pre-EF-Tu on activase aggregation. Activase was chosen because it displays an exceptional sensitivity to thermal aggregation and constrains photosynthesis at high temperature. The native precursors of both wheat and maize EF-Tu displayed chaperone activity, as shown by the capacity of both proteins to reduce thermal aggregation of rubisco activase in vitro. Similarly, the recombinant maize pre-EF-Tu protected activase from thermal aggregation. This is the first report on chaperone activity of native pre-EF-Tu and the first evidence for thermal protection of a photosynthetic enzyme by this putative chaperone. The results are consistent with the hypothesis that chloroplast EF-Tu plays a functional role in heat tolerance by acting as a molecular chaperone.  相似文献   

19.
Adenosine triphosphates isolated from insect and rabbit muscle have been compared on the basis of a number of chemical, physical, and enzymatic tests, and the insect material is shown to be identical with that obtained from rabbit.  相似文献   

20.
The effect of EDTA-decalcification, reactivating and activating procedures on the hydrolysis of ATP was studied histochemically in developing dental tissues in the rat. The incubation media contained lead citrate at alkaline pH and lead nitrate at neutral pH, and the results with ATP as substrate were compared with those obtained with beta-glycerophosphate. The ion dependency of ATP hydrolysis could only be ascertained in decalcified sections. As in earlier studies on the hydrolysis of beta-glycerophosphate in dental tissues, this hydrolysis could readily be reactivated through preincubation of the sections in a series of 0.1 M solutions of divalent cations; Zn2+ being the most efficient. This treatment was now found also to give rise to an ATP hydrolysis, which occurred without the need for activating ions in the incubation medium. This ATP hydrolysis should thus be described as nonspecific and, in terms of ion dependency, as due to a metalloenzyme, i.e. alkaline phosphatase. Activating ion dependent ATP hydrolysis in the dental tissues was found in the blood vessels and in the apical part of the secretory ameloblasts. The former was activated by Mg2+, Ca2+ and Mn2+, and the latter by Ca2+ and--almost specifically--by Sr2+. Preincubation with Zn2+ always inhibited the ion dependant ATP hydrolysis in the dental tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号