首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We investigated the temporal pattern of oral irritation elicited by sequential application of mustard oil (allyl-isothiocyanate), and whether it exhibits self-desensitization and cross-desensitization with capsaicin. Mustard oil (0.125%, 40 micro l) was sequentially applied to one side of the tongue at 1 min intervals, and subjects rated the intensity of the irritant sensation elicited by each stimulus. Ratings successively declined across trials, indicating desensitization. In contrast, sequential application of capsaicin (10 ppm) elicited irritation that increased in intensity across trials (sensitization). To test for self-desensitization by mustard oil, a 10 min hiatus was imposed following the series of unilateral mustard oil stimuli, after which mustard oil was applied to both sides of the tongue. In a two-alternative forced-choice paradigm, subjects chose which side had stronger irritation and also independently rated the irritant intensity on each side. A significant majority of subjects chose the side not previously receiving mustard oil as more intense, and assigned significantly higher intensity ratings to that side, indicating self-desensitization. In two additional sessions, the same paradigm was used to show mustard oil cross-desensitization of irritation elicited by capsaicin, and capsaicin cross-desensitization of irritation from mustard oil. In a final session, sequential application of mustard oil at faster (20 s) intervals initially evoked a sensitizing pattern followed by desensitization. The temporal patterns of oral irritation exhibited by mustard oil, and its reciprocal cross-desensitization with capsaicin, are similar to those of menthol and nicotine.  相似文献   

2.
Willis DN  Liu B  Ha MA  Jordt SE  Morris JB 《FASEB journal》2011,25(12):4434-4444
Menthol, the cooling agent in peppermint, is added to almost all commercially available cigarettes. Menthol stimulates olfactory sensations, and interacts with transient receptor potential melastatin 8 (TRPM8) ion channels in cold-sensitive sensory neurons, and transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing channel. It is highly controversial whether menthol in cigarette smoke exerts pharmacological actions affecting smoking behavior. Using plethysmography, we investigated the effects of menthol on the respiratory sensory irritation response in mice elicited by smoke irritants (acrolein, acetic acid, and cyclohexanone). Menthol, at a concentration (16 ppm) lower than in smoke of mentholated cigarettes, immediately abolished the irritation response to acrolein, an agonist of TRPA1, as did eucalyptol (460 ppm), another TRPM8 agonist. Menthol's effects were reversed by a TRPM8 antagonist, AMTB. Menthol's effects were not specific to acrolein, as menthol also attenuated irritation responses to acetic acid, and cyclohexanone, an agonist of the capsaicin receptor, TRPV1. Menthol was efficiently absorbed in the respiratory tract, reaching local concentrations sufficient for activation of sensory TRP channels. These experiments demonstrate that menthol and eucalyptol, through activation of TRPM8, act as potent counterirritants against a broad spectrum of smoke constituents. Through suppression of respiratory irritation, menthol may facilitate smoke inhalation and promote nicotine addiction and smoking-related morbidities.  相似文献   

3.
Addition of menthol to cigarettes may be associated with increased initiation of smoking. The potential mechanisms underlying this association are not known. Menthol, likely due to its effects on cold-sensing peripheral sensory neurons, is known to inhibit the sensation of irritation elicited by respiratory irritants. However, it remains unclear whether menthol modulates cigarette smoke irritancy and nicotine absorption during initial exposures to cigarettes, thereby facilitating smoking initiation. Using plethysmography in a C57Bl/6J mouse model, we examined the effects of L-menthol, the menthol isomer added to cigarettes, on the respiratory sensory irritation response to primary smoke irritants (acrolein and cyclohexanone) and smoke of Kentucky reference 2R4 cigarettes. We also studied L-menthol’s effect on blood levels of the nicotine metabolite, cotinine, immediately after exposure to cigarette smoke. L-menthol suppressed the irritation response to acrolein with an apparent IC₅₀ of 4 ppm. Suppression was observed even at acrolein levels well above those necessary to produce a maximal response. Cigarette smoke, at exposure levels of 10 mg/m³ or higher, caused an immediate and marked sensory irritation response in mice. This response was significantly suppressed by L-menthol even at smoke concentrations as high as 300 mg/m³. Counterirritation by L-menthol was abolished by treatment with a selective inhibitor of Transient Receptor Potential Melastatin 8 (TRPM8), the neuronal cold/menthol receptor. Inclusion of menthol in the cigarette smoke resulted in roughly a 1.5-fold increase in plasma cotinine levels over those observed in mice exposed to smoke without added menthol. These findings document that, L-menthol, through TRPM8, is a strong suppressor of respiratory irritation responses, even during highly noxious exposures to cigarette smoke or smoke irritants, and increases blood cotinine. Therefore, L-menthol, as a cigarette additive, may promote smoking initiation and nicotine addiction.  相似文献   

4.
The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.  相似文献   

5.
We presently investigated 2 novel menthol derivatives GIV1 and GIV2, which exhibit strong cooling effects. In previous human psychophysical studies, GIV1 delivered in a toothpaste medium elicited a cooling sensation that was longer lasting compared with GIV2 and menthol carboxamide (WS-3). In the current study, we investigated the molecular and cellular effects of these cooling agents. In calcium flux studies of TRPM8 expressed in HEK cells, both GIV1 and GIV2 were approximately 40- to 200-fold more potent than menthol and WS-3. GIV1 and GIV2 also activated TRPA1 but at levels that were 400 times greater than those required for TRPM8 activation. In calcium imaging studies, subpopulations of cultured rat trigeminal ganglion and dorsal root ganglion cells responded to GIV1 and/or GIV2; the majority of these were also activated by menthol and some were additionally activated by the TRPA1 agonist cinnamaldehyde and/or the TRPV1 agonist capsaicin. We also made in vivo single-unit recordings from cold-sensitive neurons in rat trigeminal subnucleus caudalis (Vc). GIV 1 and GIV2 directly excited some Vc neurons, GIV1 significantly enhanced their responses to cooling, and both GIV1 and GIV2 reduced responses to noxious heat. These novel cooling compounds provide additional molecular tools to investigate the neural processes of cold sensation.  相似文献   

6.
Nicotine contacting mucous membranes elicits irritation that decreases with repeated exposures (self-desensitization). We investigated the time course of nicotine self-desensitization and compared it with that of capsaicin. Nicotine (300 mM, 10 microl) was applied to one-half of the dorsal tongue and vehicle to the other. Following a rest period ranging from 0.5 to 48 h, nicotine (5 microl) was reapplied to each side of the tongue and subjects indicated on which side they experienced stronger irritation and separately rated the intensity of the sensation on each side. After intervals of 0.5, 1, and 24 h, a significant majority of subjects chose the vehicle-treated side as having stronger irritation and assigned significantly higher intensity ratings to that side, indicating self-desensitization. The effect was not present after 48 h. By comparison, 10 parts per million (ppm) (33 microM) capsaicin induced significant self-desensitization at 1 but not 24 h, whereas a higher concentration of capsaicin (100 ppm, 330 microM) induced significant self-desensitization at intervals of 1, 24, and 48 h. These results indicate that initial exposure to nicotine or capsaicin can markedly attenuate irritant sensations elicited by subsequent exposure to these irritants hours to days later.  相似文献   

7.
In a first experiment, human subjects used a bipolar scale to rate the irritant sensation elicited by 10 sequentially repeated applications of either 3 ppm capsaicin or 250 mM citric acid on one side of the dorsal surface of the tongue, at 1 min intervals (30 s inter-stimulus interval). Citric acid-evoked irritation significantly increased across trials, consistent with sensitization. With capsaicin there was a large degree of inter- and intra-individual variation in successive ratings with no overall sensitization. Following the sequential stimulation series and a 10 min rest period, self- and cross-desensitization effects were tested in a two-alternative forced choice (2-AFC) paradigm by placing either citric acid or capsaicin on both sides of the tongue and asking subjects to indicate which side of the tongue yielded a stronger irritant sensation. Subjects also gave separate intensity ratings for irritation on each side of the tongue. Capsaicin self-desensitization was confirmed, while cross-desensitization to citric acid was not observed. In addition, citric acid self-desensitization and cross-desensitization to capsaicin were observed. In a second experiment a stronger capsaicin solution (33 ppm) was applied to one side of the tongue using cotton swabs. After the burning sensation elicited by capsaicin had disappeared, citric acid was applied bilaterally and cross-desensitization was observed using the same 2-AFC and rating procedures. This was followed by repeated re-application of citric acid at 1 min intervals to the capsaicin-treated side. The irritant sensation elicited by citric acid increased significantly, indicating a 'cross-stimulus-induced recovery' from capsaicin desensitization. In a final experiment we investigated the effect of the sodium channel blocker amiloride on the perceived irritation elicited by citric acid or capsaicin. Following application of amiloride to one side of the tongue with cotton swabs, either citric acid or capsaicin was applied bilaterally and subjects asked to perform a 2-AFC and intensity ratings. Amiloride significantly, albeit weakly, reduced the irritation elicited by citric acid while it weakly but significantly enhanced capsaicin-evoked irritation. These findings are discussed in terms of involvement of vanilloid and acid-sensitive ion channels in acid-evoked irritation and pain.  相似文献   

8.
Zhang XB  Jiang P  Gong N  Hu XL  Fei D  Xiong ZQ  Xu L  Xu TL 《PloS one》2008,3(10):e3386
Menthol is a widely-used cooling and flavoring agent derived from mint leaves. In the peripheral nervous system, menthol regulates sensory transduction by activating TRPM8 channels residing specifically in primary sensory neurons. Although behavioral studies have implicated menthol actions in the brain, no direct central target of menthol has been identified. Here we show that menthol reduces the excitation of rat hippocampal neurons in culture and suppresses the epileptic activity induced by pentylenetetrazole injection and electrical kindling in vivo. We found menthol not only enhanced the currents induced by low concentrations of GABA but also directly activated GABA(A) receptor (GABA(A)R) in hippocampal neurons in culture. Furthermore, in the CA1 region of rat hippocampal slices, menthol enhanced tonic GABAergic inhibition although phasic GABAergic inhibition was unaffected. Finally, the structure-effect relationship of menthol indicated that hydroxyl plays a critical role in menthol enhancement of tonic GABA(A)R. Our results thus reveal a novel cellular mechanism that may underlie the ambivalent perception and psychophysical effects of menthol and underscore the importance of tonic inhibition by GABA(A)Rs in regulating neuronal activity.  相似文献   

9.
Microelectrode measurements carried out on leaf cells from Physcomitrella patens revealed that a sudden temperature drop and application of menthol evoked two types of different‐shaped membrane potential changes. Cold stimulation evoked spike‐type responses. Menthol depolarized the cell membrane with different rates. When it reached above 1 mV s?1, the full response was recorded. Characteristic for the full responses was also a few‐minute plateau of the membrane potential recorded after depolarization. The influence of inhibitors of calcium channels (5 mM Gd3+), potassium channels (5 mM Ba2+), chloride channels (200 μM Zn2+, 50 μM niflumic acid) and proton pumps (10 μM DES), an activator of calcium release from intracellular stores (Sr2+), calcium chelation (by 400 μM EGTA) and phytohormones (50 μM auxin, 50 μM abscisic acid (ABA), 500 μM salicylic acid) on cold‐ and menthol‐evoked responses was tested. Both responses are different in respect to the ion mechanism: cold‐evoked depolarizations were influenced by Ba2+ and DES; in turn, menthol‐evoked potential changes were most effectively blocked by Zn2+. Moreover, the effectiveness of menthol in generation of full responses was reduced after administration of auxin or ABA, i.e. phytohormones known for their participation in responses to cold and regulation of proton pumps. The effects of DES indicated that one of the main conditions for generation of menthol‐evoked responses is inhibition of the proton pump activity. Our results indicate that perception of cold and menthol by plants proceeds in different ways due to the differences in ionic mechanism and hormone dependence of cold‐ and menthol‐evoked responses.  相似文献   

10.
Menthol, a secondary alcohol produced by the peppermint herb, Mentha piperita, is widely used in the food and pharmaceutical industries as a cooling/soothing compound and odorant. It induces Ca2+ influx in a subset of sensory neurons from dorsal root and trigeminal ganglia, due to activation of TRPM8, a Ca2+-permeable, cold-activated member of the TRP superfamily of cation channels. Menthol also induces Ca2+ release from intracellular stores in several TRPM8-expressing cell types, which has led to the suggestion that TRPM8 can function as an intracellular Ca2+-release channel. Here we show that menthol induces Ca2+ release from intracellular stores in four widely used cell lines (HEK293, lymph node carcinoma of the prostate (LNCaP), Chinese hamster ovary (CHO), and COS), and provide several lines of evidence indicating that this release pathway is TRPM8-independent: 1) menthol-induced Ca2+ release was potentiated at higher temperatures, which contrasts to the cold activation of TRPM8; 2) overexpression of TRPM8 did not enhance the menthol-induced Ca2+) release; 3) menthol-induced Ca2+ release was mimicked by geraniol and linalool, which are structurally related to menthol, but not by the more potent TRPM8 agonists icilin or eucalyptol; and 4) TRPM8 expression in HEK293 cells was undetectable at the protein and mRNA levels. Moreover, using a novel TRPM8-specific antibody we demonstrate that both heterologously expressed TRPM8 (in HEK293 cells) and endogenous TRPM8 (in LNCaP cells) are mainly localized in the plasma membrane, which contrast to previous localization studies using commercial anti-TRPM8 antibodies. Finally, aequorin-based measurements demonstrate that the TRPM8-independent menthol-induced Ca2+ release originates from both endoplasmic reticulum and Golgi compartments.  相似文献   

11.
In this study, we have investigated how the function of native and recombinant nicotinic acetylcholine receptors (nAChRs) is modulated by the monoterpenoid alcohol from peppermint (-) menthol. In trigeminal neurons (TG), we found that nicotine (75 μM)-activated whole-cell currents through nAChRs were reversibly reduced by menthol in a concentration-dependent manner with an IC?? of 111 μM. To analyze the mechanism underlying menthol's action in more detail, we used single channel and whole-cell recordings from recombinant human α4β2 nAChR expressed in HEK tsA201 cells. Here, we found a shortening of channel open time and a prolongation of channel closed time, and an increase in single channel amplitude leading in summary to a reduction in single channel current. Furthermore, menthol did not affect nicotine's EC?? value for currents through recombinant human α4β2 nAChRs but caused a significant reduction in nicotine's efficacy. Taken together, these findings indicate that menthol is a negative allosteric modulator of nAChRs.  相似文献   

12.
Using a bipolar rating scale, human subjects rated the intensity of irritation sensation evoked by repeated application of piperine (75 p.p.m.) or nicotine (0.12%) to one side of the dorsal surface of the tongue. The intensity of irritation elicited by repeated application of piperine significantly increased, while irritation elicited by repeated nicotine significantly decreased. We additionally tested if nicotine or piperine desensitized the tongue. After either piperine or nicotine was repeatedly applied to one side of the tongue, a 5 or 10 min rest period ensued, followed by re-application of piperine or nicotine to both sides of the tongue. Subjects were asked to choose which side of the tongue gave rise to a stronger irritation in a two-alternative forced choice (2-AFC) paradigm. In addition, they gave separate ratings of the intensity of irritation on the two sides of the tongue. When piperine was applied bilaterally after unilateral pretreatment with piperine and a 10 min rest period, subjects consistently chose the non-pretreated side to yield stronger irritation and assigned significantly higher ratings to that side, indicative of piperine self-desensitization. A similar self-desensitization effect was found when bilateral application of nicotine followed unilateral treatment with nicotine and a 5 min rest period. Unilateral treatment with piperine also reduced nicotine-evoked irritation on the pretreated side (cross-desensitization), but treatment with nicotine did not affect piperine-evoked irritation. This asymmetrical cross-desensitization pattern is similar to that observed between capsaicin and nicotine and constitutes an additional similarity between piperine and capsaicin.  相似文献   

13.
The effect of menthol on the discharge pattern of feline nasal and lingual cold receptors was analyzed in order to elucidate the underlying sensory transducer mechanism. A repetitive beating activity and burst (grouped) discharges were observed in both cold receptor populations at constant temperatures and after rapid cooling. An analysis of the impulse activity revealed a cyclic pattern of impulse generation, which suggested the existence of an underlying receptor potential oscillation that initiates impulses in the afferent nerve when it exceeds a threshold value. The frequency and amplitude of the periodic impulse-inducing receptor processes were characterized by the burst frequency, which increased with warming, and by the average number of impulses generated during each cycle, which increased with cooling. Menthol at micromolar concentrations induced an acceleration of the burst frequency at higher temperatures, but reduced the burst frequency in the midtemperature range. At temperatures above 25 degrees C, menthol increased the number of impulses elicited during each cycle and induced bursting in previously repetitively discharging fibers. At low temperatures, menthol suppressed bursting and finally inhibited all cold receptor activity. The impulse pattern at constant temperatures and during the dynamic response to rapid cooling was comparably affected by menthol. Calcium application completely abolished the stimulating menthol effect. Since, in equal concentrations, menthol specifically impairs neuronal calcium currents, the results are consistent with the conjecture that in cold receptors, menthol reduces the activation of a calcium-stimulated outward current by an impeding effect on a calcium conductance, thereby inducing depolarization and a modification of bursting behavior. The data confirm the hypothesis of a calcium-controlled outward conductance being involved in the generation of cyclic afferent activity in cold receptors.  相似文献   

14.
It was recently found that transient receptor potential (TRP) channels play an important role in the transduction of thermal, mechanical, and chemical stimuli underlying the somatic sensation. Several types of TRP channels exhibit sensitivity to increases or decreases in temperature, as well as to the action of chemical ligands that elicit similar thermal or painful sensations. These agents include menthol, mustard oil, cinnamaldehyde (CA), gingerol, capsaicin, camphor, eugenol, and others. Cinnamaldehyde is a pungent chemical obtained from cinnamon, which acts as an agonist of the TRPA1 channels; these channels were originally reported to be activated by cold temperatures (below 18°C). TRPA1 is also implicated in cold nociception. However, its role in the formation of cold pain is more controversial, with discrepant reports that TRPA1s do or do not respond to intense cooling. Menthol derived from plants of the mint family enhances the feeling of coldness by interacting with the cold-sensitive TRPM8 channels, but its effect on pain is less well understood. Using behavioral methods, we showed that unilateral intraplantar injection of CA (5 to 20%) induced a significant concentration-dependent decrease in the latency for ipsilateral paw withdrawal from a noxious heat stimulus, i.e., heat hyperalgesia. Cinnamaldehyde also significantly reduced mechanical withdrawal thresholds for the injected paw, i.e., evoked mechanical allodynia. Bilateral intraplantar injections of CA resulted in a significant cold hyperalgesia (cold plate test) and a weak enhancement of innocuous cold avoidance (thermal preference test). In contrast to CA, menthol in a dose-dependent manner increased the latency for noxious heat-evoked withdrawal, i.e., exerted an antinociceptive effect. Menthol did not affect mechanosensation except for a weak allodynic effect when applied in the highest concentration used (40 %), indicating that it did not exert a local anesthetic effect. Menthol had a biphasic effect on cold avoidance. High concentrations of menthol reduced cold avoidance, i.e., induced cold hypoalgesia, while low menthol concentrations significantly intensified cold avoidance. The highest menthol concentration provided cold hypoalgesia (cold plate test), while lower concentrations had no effect. Taken together, our data support the idea that TRPA1 and TRPM8 channels represent promising peripheral targets for pain modulation.  相似文献   

15.
Capsaicin is viewed as a purely chemesthetic stimulus that selectively stimulates the somatosensory system. Here we show that when applied to small areas of the tongue, capsaicin can produce a bitter taste as well as sensory irritation. In experiment 1, individuals were screened for the ability to perceive bitterness from capsaicin on the circumvallate papillae. Fifteen of 25 subjects who reported at least weak bitterness rated the intensity of taste, irritation and coolness produced by 100-320 microM capsaicin and 100-320 mM menthol applied via cotton swabs to the tip (fungiform region), the posterior edge (foliate region), and the dorsal posterior surface (circumvallate region) of the tongue. Sucrose, citric acid, sodium chloride and quinine hydrochloride were applied to the same areas to assess tastes responsiveness. On average, capsaicin and menthol produced "moderate" bitterness (and no other significant taste qualities) in the circumvallate region, and weaker bitterness on the side and tip of the tongue. Sensory irritation from capsaicin was rated significantly higher at the tongue tip, whereas menthol coolness was rated higher in the circumvallate region. In experiment 2 we applied sucrose and quinine hydrochloride together with capsaicin to investigate the effects other taste stimuli might have on capsaicin's reported bitterness. As expected, adding quinine produced stronger bitterness in the circumvallate and fungiform regions, and adding sucrose significantly reduced the bitterness of capsaicin in the circumvallate region. Overall, the results suggest that capsaicin and menthol are capable of stimulating a subset of taste neurons that respond to bitter substances, perhaps via receptor-gated ion channels like those recently found in capsaicin- and menthol-sensitive trigeminal ganglion neurons, and that the glossopharyngeal nerve may contain more such neurons than the chorda tympani nerve. That some people fail to perceive bitterness from capsaicin further implies that the incidence of capsaicin-sensitive taste neurons varies across people as well as between gustatory nerves.  相似文献   

16.
The sensation produced by carbonated beverages has been attributed to chemical excitation of nociceptors in the oral cavity via the conversion of CO(2) to carbonic acid in a reaction catalyzed by carbonic anhydrase. In separate studies, we tested if the carbonic anyhdrase blocker, acetazolamide, reduced either the intensity of sensation in humans or c-fos expression by trigeminal neurons in rats, evoked by application of carbonated water to the tongue. In the psychophysical experiment, one-half of the dorsal tongue was pretreated with acetazolamide (1 or 2%), after which the tongue was exposed bilaterally to carbonated water. In a two-alternative forced-choice paradigm, subjects chose which side of the tongue yielded a stronger sensation and additionally rated the magnitude of sensation on each side. Pretreatment with acetazolamide reduced the magnitude of sensation elicited by carbonated water in a concentration-dependent manner, since a significant majority of subjects chose the untreated side of the tongue as having a stronger sensation and assigned significantly higher intensity ratings to that side. Acetazolamide did not affect the irritant sensation from citric acid, while capsaicin pretreatment reduced both the sensation elicited by carbonated water and the irritation induced by citric acid application. In a separate experiment using rats, delivery of carbonated water to the tongue significantly increased the number of cells expressing c-fos-like immunoreactivity in the dorsomedial trigeminal nucleus caudalis (versus saline controls); this was significantly reduced by pretreatment with acetazolamide. Our results support the hypothesis that carbonated water activates lingual nociceptors via conversion of CO(2) to carbonic acid; the nociceptors in turn excite trigeminal neurons involved in signaling oral irritation.  相似文献   

17.
Psychophysical methods were used to assess changes in the intensityof irritant sensations elicited by repeated application of capsaicinand nicotine delivered unilaterally to the tongue of human subjects.Whereas capsaicin (0.5 or 3 p.p.m.; repeated at 1 min intervalsover 10 min) evoked progressively stronger ratings of irritation(sensitization),there was a significant decrement in irritation ratings (desensitization)to repeated application of nicotine (0.1%). A two-alternativeforced-choice (2-AFC) procedure was additionally used to testfor self- and cross-desensitization. After the subjects hadreceived either repeated capsaicin or nicotine, a rest periodensued followed by the 2-AFC procedure. Either capsaicin ornicotine was delivered bilaterally to the tongue and subjectswere asked to choose which side yielded a stronger sensation.Following capsaicin pretreatment, subjects reported that capsaicinevoked a stronger sensation on the previously untreated side(capsaicin self-desensitization). Similar self-desensitizationwas observed with nicotine. Furthermore, nicotine evoked a significantlyweaker sensation on the side of the tongue pretreated with capsaicin(cross-desensitization). In contrast, capsaicin did not consistentlyevoke a weaker sensation on the nicotine-pretreated side, indicatingan absence of cross-desensitization. These results are discussedin terms of physiological mechanisms that might underlie thecontrasting sensory effects of nicotine versus capsaicin. Chem.Senses 22: 483–492, 1997.  相似文献   

18.
Menthol is known for its analgesic properties, but relatively little information is available on its potential as an anaesthetic on fish. The purpose of this study was to assess anaesthetic and sedative effectiveness of menthol and its safety in rainbow trout (Oncorhynchus mykiss). Juvenile rainbow trout 180 ± 28 g (mean ± SD) within a range of 152–208 g fish?1 were individually exposed to menthol concentrations between 10 and 150 mg l?1 and observed for behavioural responses, induction time to anaesthesia and recovery time. Menthol concentrations of 40–150 mg l?1 induced anaesthesia with varying exposure times. There was an exponential relationship (p < 0.001) between induction time and menthol concentration. Menthol concentrations of 80–150 mg l?1 induced anaesthesia within three minutes of exposure and fish recovered within three minutes. Induction and recovery data showed that 80 mg l?1 was most suitable for anaesthesia in juveniles of this species. Concentrations of 10–20 mg l?1 had sedative effects. Menthol stock solutions prepared using ethanol and acetone and storage time of stock solutions at room temperature for up to 48 h showed no significant differences in anaesthetic efficiency. When exposure time to menthol was kept constant at three minutes, 22% of fish had temporary cessation of gill ventilation. These fish had longer recovery times than those that did not show that response. Menthol was an effective anaesthetic and could be tested as a sedative for trout.  相似文献   

19.
The aim of the present study was to determine whether the recordingof chemosensory evoked potentials (CSEP) in healthy subjects(n = 11) can be helpful in differentiating the olfactory ortrigeminal component possessed by odorants. By recording fromseveral positions on the surface of the skull it was attemptedto ascertain whether different generators are responsible forCSEP associated with the different sensory components of odorants.Birhinal stimulation was used in order to establish an interactionbetween the stimulated side and the stimulated sensory channel.The four substances carbon dioxide, menthol, hydrogen sulphideand vanillin were tested. EEG was recorded from eight positions. The CSEPs' topographical distribution revealed differences inthe location of maximum amplitudes following stimulation withdifferent types of stimulants. Largest amplitudes always appearedat the vertex when trigeminal stimulants (menthol, carbon dioxide)were presented, whereas olfactory substances (vanillin, hydrogensulphide) elicited maximal amplitudes at parietal and centralsites. This suggests that at least two neuronal populationsare involved in the cortical generation of CSEP. Another interestingfinding was that the evoked potentials differed in relationto the stimulated side. Generally, responses to carbon dioxide,menthol and hydrogen sulphide had shorter latencies and smalleramplitudes after stimulation of the left nostril. In contrast,after stimulation with vanillin latencies were shorter and amplitudestended to be smaller after stimulation of the right side. Sincevanillin was the only substance which always evoked pleasantand positive associations, it was assumed that the differencesin CSEP after stimulation of the two nostrils are related tothe different processing of emotional information within thetwo hemispheres.  相似文献   

20.
Rozin  Paul; Shenker  Joel 《Chemical senses》1989,14(6):771-779
Humans commonly come to enjoy experiencing the innately unpalatableoral sensations produced by the consumption of ‘hot’irritants (e.g. chilli pepper, hot mustard and horseradish),and ‘cold’ irritants (menthol). We explore the extentto which irritant preferences reflect an underlying tendencyto reverse innate aversions to oral sensations, and the extentto which reversal of oral aversions is related to liking forirritation or temperature change on the body surface, by examiningindividual differences in patterns of liking for these experiences.There are substantial correlations of liking for either hotor cold irritation produced by different agents in the mouthor nose. However, liking for hot irritants is uncorrelated withliking for cold irritants. Liking for the oral cold irritationeffect of menthol is only weakly related to liking for the sensationsproduced by menthol on the body surface. Neither liking forhot nor cold irritants is related to liking for sudden temperaturechanges on the whole body surface (e.g. the sensation producedby jumping into cold water). A two-dimensional multidimensionalscaling of liking for irritation and temperature changes suggeststhree clusters of items: hot oral irritants, cold irritant (menthol)naso-orally or on the skin surface and total body temperaturechange (hot or cold).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号