首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sensilla basiconica on the maxillary palps of female Aedes aegypti contain a receptor neuron which produces a phasic-tonic pattern of action potential response to low concentrations (150–300 ppm) of carbon dioxide (CO2), a stimulus known to be involved with host seeking behavior. These receptor neurons respond reliably to small increments in CO2 concentration (e.g., 50 ppm). We were particularly interested in evaluating the possibility that the sensitivity to step increases in CO2 concentration could be modulated by alterations in the background levels of CO2, over a range which might be encountered during host-seeking behavior. We report here that the response (impulses/s) to a single pulse of a given concentration of CO2 appears to be independent of the background level of CO2, unless that level is equal to or greater than the concentration of the stimulus pulse. Females of other mosquito species, including: Anopheles stephensi, Culex quinquefasciatus, Culiseta melanura, and Aedes taeniorhynchus, also possess sensilla with receptor neurons that respond with comparable sensitivity to CO2 stimulation. However, there is much interspecific variation in both the external morphology of the maxillary palp and the distribution of sensilla along the palp. Male Ae. aegypti have morphologically similar sensilla which also contain a receptor neuron that responds to CO2.  相似文献   

2.
Wall-pore olfactory sensilla located in the capsule of Haller's organ on the tarsus of Amblyomma variegatum ticks bear cells responding to vertebrate breath: one of these sensilla contains a CO2-excited receptor and a second sensillum has a CO2-inhibited receptor. Each of these antagonistic CO2-receptors, which display typical phasic-tonic responses, monitors a different CO2-concentration range. The CO2-inhibited receptor is very sensitive to small concentration changes between 0 and ca. 0.2%, but variations of 0.01% around ambient (ca. 0.04%) induce the strongest frequency modulation of this receptor. An increase of just 0.001-0.002% (10-20 ppm) above a zero CO2-level already inhibits this receptor. By contrast, the CO2-excited receptor is not so sensitive to small CO2 shifts around ambient, but best monitors changes in CO2 concentrations above 0.1%. This receptor is characterized by a steep dose-response curve and a fast inactivation even at high CO2-concentrations (greater than 2%). In a wind-tunnel, Amblyomma variegatum is activated from the resting state and attracted by CO2 concentrations of 0.04 to ca. 1%, which corresponds to the sensitivity range of its CO2-receptors. The task of perceiving the whole concentration range to which this tick is attracted would thus appear to be divided between two receptors, one sensitive to small changes around ambient and the other sensitive to the higher concentrations normally encountered when approaching a vertebrate host.  相似文献   

3.
Liu Y  Tang F  Kang CJ  Cao X 《Luminescence》2012,27(4):274-278
Detection of hydrogen sulphide (H2S) was conducted based on cataluminescence (CTL) sensors, using alkaline‐earth metal carbonates as catalysts. Optimal working conditions, analytical characteristics and the response properties of the sensor were investigated. CTL intensity examination showed that sensors fabricated with CaCO3, SrCO3 or BaCO3 could be used to detect H2S gas sensitively. The optimal sensing temperature was about 320 °C. Under the sensing conditions with temperature at ca. 320 °C and gas flow rate in the range 180–200 mL/min, the linear range of CTL intensity vs H2S concentration was 25–500 ppm, with a detection limit of 2 ppm. The response and recovery times of the sensor were within 5 and 25 min, respectively. Also, the sensor had the property of high selectivity to H2S with very weak or no obvious response to 14 other gases, such as NO2, NH3, hydrocarbons and alcohol. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Ultrastructural examination of grooved-peg (GP) sensilla on the antenna of fifth instar Triatoma infestans nymphs by scanning electron microscopy and transmission electron microscopy reveal that they are 8–18 μm long with a diameter of about 2–2.8 μm at the non-articulated base. Some pegs have a terminal pore. These double-walled wall-pore (dw-wp) sensilla have an outer cuticular wall with 13–18 longitudinal grooves at the distal part of the peg. Groove channels are present at the bottom of the grooves from which radial spoke channels lead into the inner sensillum-lymph cavity. A dendrite sheath connects the tip of the thecogen cell to the inner cuticular wall thus forming separated outer and inner sensillum-lymph cavities. Four or five bipolar receptor cells are ensheathed successively within the GP sensilla by the thecogen cell, trichogen and tormogen cells. The inner dendritic segments of each sensory cell give rise at the ciliary constriction to an unbranched outer dendritic segment which can reach the tip of the sensillum.Electrophysiological recordings from the GP sensilla indicate that they house NH3, short-chain carboxylic acid and short-chain aliphatic amine receptor cells and can be divided into three functional sub-types (GP 1–3). All GP sensilla carry a receptor cell excited by aliphatic amines, such as isobutylamine, a compound associated with vertebrate odour. GP type 1 and 2 sensilla house, in addition, an NH3-excited cell whereas the type 2 sensilla also contains a short-chain carboxylic acid receptor. No cell particularly sensitive to either NH3 or carboxylic acids was found in the grooved-peg type 3 sensilla. GP types 1, 2 and 3 represent ca. 36, 10 and 43% of the GP sensilla, respectively, whereas the remaining 11% contain receptor cells that manifest normal spontaneous activity but do not respond to any of the afore mentioned stimuli.  相似文献   

5.
Stomatal conductance of plants exposed to elevated CO2 is often reduced. Whether this leads to water savings in tall forest‐trees under future CO2 concentrations is largely unknown but could have significant implications for climate and hydrology. We used three different sets of measurements (sap flow, soil moisture and canopy temperature) to quantify potential water savings under elevated CO2 in a ca. 35 m tall, ca. 100 years old mixed deciduous forest. Part of the forest canopy was exposed to 540 ppm CO2 during daylight hours using free air CO2 enrichment (FACE) and the Swiss Canopy Crane (SCC). Across species and a wide range of weather conditions, sap flow was reduced by 14% in trees subjected to elevated CO2, yielding ca. 10% reduction in evapotranspiration. This signal is likely to diminish as atmospheric feedback through reduced moistening of the air comes into play at landscape scale. Vapour pressure deficit (VPD)‐sap flow response curves show that the CO2 effect is greatest at low VPD, and that sap flow saturation tends to occur at lower VPD in CO2‐treated trees. Matching stomatal response data, the CO2 effect was largely produced by Carpinus and Fagus, with Quercus contributing little. In line with these findings, soil moisture at 10 cm depth decreased at a slower rate under high‐CO2 trees than under control trees during rainless periods, with a reversal of this trend during prolonged drought when CO2‐treated trees take advantage from initial water savings. High‐resolution thermal images taken at different heights above the forest canopy did detect reduced water loss through altered energy balance only at <5 m distance (0.44 K leaf warming of CO2‐treated Fagus trees). Short discontinuations of CO2 supply during morning hours had no measurable canopy temperature effects, most likely because the stomatal effects were small compared with the aerodynamic constraints in these dense, broad‐leaved canopies. Hence, on a seasonal basis, these data suggest a <10% reduction in water consumption in this type of forest when the atmosphere reaches 540% ppm CO2.  相似文献   

6.
Summary The tips of the labial palps ofRhodogastria possess a pit housing uniform sensilla (Fig. 1), histologically characterized by wall-pores and receptor cells with lamellated outer dendrites (Fig. 2). The receptor cell axons project to glomeruli in the deutocerebrum (cf. Fig. 3) which are not innervated by antennal receptors. From their histology as well as from their central projection these sense organs are identical with palpal pit organs of other Lepidoptera (Lee et al. 1985; Kent et al. 1986; Lee and Altner 1986).Physiologically, the palp-pit receptors respond uniformly; they are most excitable by stimulation with carbon dioxide (Fig. 6) while they exhibit relatively moderate responses to various odorants (Fig. 4). The responses to CO2 (Fig. 7) show a steep dose-response characteristic. In ambient atmosphere (i.e., ca. 0.03% CO2) the cells are in an excited condition already; the seeming spontaneous activity exhibited in air is decreased if the preparation is kept under N2 or O2 or CO2-free air (Figs. 7, 10). There is hardly any adaptation of the responses to continuous or repeated stimulation (Fig. 8). Perhaps CO2 sensitivity is correlated with sensilla characterized by both wall-pores and lamellated dendrites. Pilot tests indicate that CO2 perception might be widespread in the Lepidoptera (cf. Fig. 12), but the biological significance remains obscure.  相似文献   

7.
Soil acidification is a very important process in the functioning of earth's ecosystems. A major source of soil acidity is CO2, derived from the respiration of plant roots and microbes, which forms carbonic acid in soil waters. Because elevated atmospheric CO2 often stimulates respiration of soil biota in experiments that test ecosystem effects of elevated atmospheric CO2, we hypothesize that rising atmospheric CO2 (which has increased from ~200 ppm since the interglacial and may exceed 550 ppm by the end of the 21st century) is significantly increasing acid inputs to soils. Here, using column‐leaching experiments with contrasting soils, we demonstrate that soil CO2 is a much more potent agent of soil acidification than is generally appreciated, capable of displacing almost all exchangeable base cations in soils, and even elevating Al(III) concentrations in H2CO3‐acidified soil waters. The potent soil acidifying potential of soil H2CO3 is attributed to the low pKa,1 of molecular H2CO3 (3.76 at 25°C), which contrasts greatly with that of (a convention that combines CO2 (aq) and molecular H2CO3, the pKa,1 of which is 6.36 at 25°C). This distinction is significant for soil systems because of soil's greatly elevated CO2, their variety of sinks for H+, and the wide range of contact times between soil solids, water, and gas. Modelling suggests that a doubling of atmospheric CO2 may increase acid inputs from carbonic acid leaching by up to 50%. Combined with the results of CO2 studies in whole ecosystems, this implies that increases in atmospheric CO2 since the interglacial have gradually acidified soils, especially poorly buffered soils, throughout the world.  相似文献   

8.
The increasing level CO2 may altered host plant physiology and hence affect the foraging behavior of herbivore insects and predator. Hence, the aim of this study was provides evidence that host plants grown at different levels of CO2 can alter the choice behavior of aphid, Sipha flava and their natural enemies, Cycloneda sanguinea and Diomus seminulus. The plant used was Pennisetum purpureum, cultivar Cameron Piracicaba growing in greenhouse (mean value of CO2?=?440 ppm), climatic chamber with constant value of CO2?=?500 ppm and climatic chamber with fluctuating CO2 (mean value?=?368 ppm). A glass Y-shape olfactometer was used to verify the insects responses towards elephant grass plants cultivated under different conditions. The aphids were statistically more attracted by plants grown with constant CO2 level (500 ppm) than by plants grown with fluctuating CO2 level or plants grown in greenhouse. There was no difference in S. flava preference to non-infested versus infested plants by conspecifics. The predator C. sanguinea did not show difference between plants grown with constant CO2 level and infested or not with S. flava. However, the predator D. seminulus showed higher preference to plants grown with constant CO2 level and infested with S. flava. This study showed that the response of S. flava and its predators were affected by plants grown under different levels of CO2.  相似文献   

9.
We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor.  相似文献   

10.
In C3 leaves, the mesophyll conductance to CO2 diffusion, gm, determines the drawdown in CO2 concentration from intercellular airspace to the chloroplast stroma. Both gm and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of gm to changes in CO2 in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO2 calibration system specially designed for a range of CO2 and O2 concentrations. CO2 was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O2 a step increase from 200 to 1000 ppm significantly decreased gm by 26–40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26–38% increase in gm was not statistically significant. The response of gm to CO2 was less in 21% O2. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO2. We discuss the effects of isotope fractionation factors on estimating gm.  相似文献   

11.
Summary Three high marsh communities on the Chesapeake Bay were exposed to a doubling in ambient CO2 concentration for one growing season. Open-top chambers were used to raise CO2 concentrations ca. 340 ppm above ambient over monospecific communities of Scirpus olneyi (C3) and Spartina patens (C4), and a mixed community of S. olneyi, S. patens, and Distichlis spicata (C4). Plant growth and senescence were monitored by serial, nondestructive censuses. Elevated CO2 resulted in increased shoot densities and delayed sensecence in the C3 species. This resulted in an increase in primary productivity in S. olneyi growing in both the pure and mixed communities. There was no effect of CO2 on growth in the C4 species. These results demonstrate that elevated atmospheric CO2 can cause increased aboveground production in a mature, unmanaged ecosystem.  相似文献   

12.
13.
There are three morphological types of wall-pore single-walled sensilla on the antennae of Schedorhinotermes lamanianus workers. Among these, the sensilla of the type SW1 always bear two neurons that are distinguishable by their impulse amplitudes in electrophysiological recordings. Both neurons are odour-sensitive and respond with excitation to an equally narrow and strikingly congruent spectrum of odours. 1-Pentanol, 1-hexanol and 2-hexanol cause maximum excitation in both cells. In addition one cell responds to CO2. Short pulses of CO2 up to 3 s duration inhibit this cell totally. The duration of total inhibition increases with the logarithm of the CO2-concentration between 0.06% and 100%. Pulses of CO2 with concentrations above 0.15% cause an inhibition that lasts longer than the period of stimulation. Prolonged CO2 -stimuli (> 300 s) with a concentration between 0.5% and 5% CO2 initially cause total inhibition. However, after 1 to 5 min, activity reappears and reaches a new constant but dose-dependent frequency. None of the stimulatory odours leads to a response in the cell when applied together with CO2. The sensitivity to odours of this one cell type is switched off by CO2, whilst CO2 does not influence the other neuron in the same sensillum. The CO2-concentration, (high in the centres of termite nests, low outside the nests) may give important information about the context in which an individual receives a signal. The described modulation of odoursensitivity by CO2 allows the presentation of two hypothetical mechanisms of context-dependent signal interpretation.  相似文献   

14.
The physiological response of vegetation to increasing atmospheric carbon dioxide concentration ([CO2]) modifies productivity and surface energy and water fluxes. Quantifying this response is required for assessments of future climate change. Many global climate models account for this response; however, significant uncertainty remains in model simulations of this vegetation response and its impacts. Data from in situ field experiments provide evidence that previous modeling studies may have overestimated the increase in productivity at elevated [CO2], and the impact on large‐scale water cycling is largely unknown. We parameterized the Agro‐IBIS dynamic global vegetation model with observations from the SoyFACE experiment to simulate the response of soybean and maize to an increase in [CO2] from 375 ppm to 550 ppm. The two key model parameters that were found to vary with [CO2] were the maximum carboxylation rate of photosynthesis and specific leaf area. Tests of the model that used SoyFACE parameter values showed a good fit to site‐level data for all variables except latent heat flux over soybean and sensible heat flux over both crops. Simulations driven with historic climate data over the central USA showed that increased [CO2] resulted in decreased latent heat flux and increased sensible heat flux from both crops when averaged over 30 years. Thirty‐year average soybean yield increased everywhere (ca. 10%); however, there was no increase in maize yield except during dry years. Without accounting for CO2 effects on the maximum carboxylation rate of photosynthesis and specific leaf area, soybean simulations at 550 ppm overestimated leaf area and yield. Our results highlight important model parameter values that, if not modified in other models, could result in biases when projecting future crop–climate–water relationships.  相似文献   

15.
Hydrogen peroxide (H2O2) and hydroxyl radicals (HO·) are generated through partial reduction of oxygen. The HO· are the most reactive and have a shorter half-life than H2O2, they are produced from comparatively stable H2O2 through Fenton reaction. Although controlling HO· is important and biologically advantageous for organisms, it may be difficult. Ticks are obligate hematophagous arthropods that need blood feeding for development. Ticks feed on vertebrate blood containing high levels of iron. Ticks also concentrate iron-containing host blood, leading to high levels of iron in ticks. Host-derived iron may react with oxygen in the tick body, resulting in high concentrations of H2O2. On the other hand, ticks have antioxidant enzymes, such as peroxiredoxins (Prxs), to scavenge H2O2. Gene silencing of Prxs in ticks affects their blood feeding, oviposition, and H2O2 concentration. Therefore, Prxs could play important roles in ticks’ blood feeding and oviposition through the regulation of the H2O2 concentration. This review discusses the current knowledge of Prxs in hard ticks. Tick Prxs are also multifunctional molecules related to antioxidants and immunity like other organisms. In addition, tick Prxs play a role in regulating the host immune response for ticks’ survival in the host body. Tick Prx also can induce Th2 immune response in the host. Thus, this review would contribute to the further understanding of the tick’s antioxidant responses during blood feeding and the search for a candidate target for tick control.  相似文献   

16.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

17.
In response to water stress, Portulacaria afra (L.) Jacq. (Portulacaceae) shifts its photosynthetic carbon metabolism from the Calvin-Benson cycle for CO2 fixation (C3) photosynthesis or Crassulacean acid metabolism (CAM)-cycling, during which organic acids fluctuate with a C3-type of gas exchange, to CAM. During the CAM induction, various attributes of CAM appear, such as stomatal closure during the day, increase in diurnal fluctuation of organic acids, and an increase in phosphoenolpyruvate carboxylase activity. It was hypothesized that stomatal closure due to water stress may induce changes in internal CO2 concentration and that these changes in CO2 could be a factor in CAM induction. Experiments were conducted to test this hypothesis. Well-watered plants and plants from which water was withheld starting at the beginning of the experiment were subjected to low (40 ppm), normal (ca. 330 ppm), and high (950 ppm) CO2 during the day with normal concentrations of CO2 during the night for 16 days. In water-stressed and in well-watered plants, CAM induction as ascertained by fluctuation of total titratable acidity, fluctuation of malic acid, stomatal conductance, CO2 uptake, and phosphoenolpyruvate carboxylase activity, remained unaffected by low, normal, or high CO2 treatments. In well-watered plants, however, both low and high ambient concentrations of CO2 tended to reduce organic acid concentrations, low concentrations of CO2 reducing the organic acids more than high CO2. It was concluded that exposing the plants to the CO2 concentrations mentioned had no effect on inducing or reducing the induction of CAM and that the effect of water stress on CAM induction is probably mediated by its effects on biochemical components of leaf metabolism.  相似文献   

18.
Spinach plunts (Spinacia oleracea L. cv. Monosa) were exposed to air with and without 0.25 μl l-1 H2S. Effects of H2S exposure for up to 18 days on photosynthesis, dark respiration and on chlorophyll a fluorescence were studied. Dark respiration was not affected by H2S fumigation. Photosynthetic CO2 fixation decreased linearly with time in both control and fumigated plants. The rate of decrease in CO2 fixation was faster in the fumigated plants; after 14 days of exposure the fumigated plants showed a decrease in CO2 fixation of 23%äs compared with the control plants. The H2S-induced decrease in CO2 fixation was accompanied by a decrease in quenching of the chlorophyll fluorescence. The most characteristic change in chlorophyll fluorescence was a decreased difference between maximum and steady-state fluorescence [(P-T)/P), suggesting a reduced efficiency in the use of photochemical energy in photosynthesis. Differences in CO2 fixation were more pronounced whcn measured at high light intensity; the maximum rate of CO2 fixation at light saturation decreased significantly with time in the H2S-exposed plants; after 14 days of H2S exposure a decrease of more than 70% was noted. The decrease in CO2 fixation could not be attributed to a decreased chlorophyll content; on the contrary, chlorophyll content even slightly increased during fumigation. The initial increase in CO2 fixation rate with increasing light intensity was also reduced by prolonged H2S fumigation, indicating an effect of H2S fumigation on photosynthetic electron transport. Finally, the phytotoxicity of H2S is discusscd in relation to the H2S-induced changes in photosynthetic CO2 fixation and chlorophyll a fluorescence, and the effect of H2S on leaf development observed in earlier studies.  相似文献   

19.
Studies on sulphur in vertisols   总被引:1,自引:0,他引:1  
Summary Some soil and plant test methods were evaluated for predicting response of soybean crop (Glycine max (L.) Merr.) to S application in vertisols. Morgan's reagent, 500 ppm P containing Ca(H2PO4)2.H2O and KH2PO4 solutions, 0.5N NH4OAc+0.25N HOAc and 0.15% CaCl2 were found to be suitable extractants for measuring available soil S. The critical limits of extractable S were 9.0 ppm by Morgan's reagent, 10.0 ppm by phosphate solutions, 8.0 ppm by 0.5N NH4OAc +0.25N HOAc and 14.0 ppm by 0.15% CaCl2. Morgan's reagent was regarded as superior to other soil test methods in view of its high relationship with S uptake by plants, A values and relative yield. Critical S concentration in soybean plants varied with age. It was 0.15% and 0.185% for 36 and 60 days old plants, respectively. The critical N/S ratio on the other hand appeared to be constant at about 16.5 during vegetative growth period. Constancy of critical N/S ratio in plants was attributed to the near constancy of N/S ratio in plant proteins. There was highly significant relationship between response of soybean to S and to N, supporting the conclusion of some earlier workers that any soil showing large responses to N may not be supplying adequate S from the mineralization of soil organic matter.  相似文献   

20.
Behavioural responses of animals to volatiles in their environment are generally dependent on context. Most natural odours are mixtures of components that can each induce different behaviours when presented on their own. We have investigated how a complex of two olfactory stimuli is evaluated by Drosophila flies in a free-flying two-trap choice assay and how these stimuli are encoded in olfactory receptor neurons. We first observed that volatiles from apple cider vinegar attracted flies while carbon dioxide (CO2) was avoided, confirming their inherent positive and negative values. In contradiction with previous results obtained from walking flies in a four-field olfactometer, in the present assay the addition of CO2 to vinegar increased rather than decreased the attractiveness of vinegar. This effect was female-specific even though males and females responded similarly to CO2 and vinegar on their own. To test whether the female-specific behavioural response to the mixture correlated with a sexual dimorphism at the peripheral level we recorded from olfactory receptor neurons stimulated with vinegar, CO2 and their combination. Responses to vinegar were obtained from three neuron classes, two of them housed with the CO2-responsive neuron in ab1 sensilla. Sensitivity of these neurons to both CO2 and vinegar per se did not differ between males and females and responses from female neurons did not change when CO2 and vinegar were presented simultaneously. We also found that CO2-sensitive neurons are particularly well adapted to respond rapidly to small concentration changes irrespective of background CO2 levels. The ability to encode temporal properties of stimulations differs considerably between CO2- and vinegar-sensitive neurons. These properties may have important implications for in-flight navigation when rapid responses to fragmented odour plumes are crucial to locate odour sources. However, the flies’ sex-specific response to the CO2-vinegar combination and the context-dependent hedonics most likely originate from central rather than peripheral processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号