首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
A Persechini  J T Stull 《Biochemistry》1984,23(18):4144-4150
Purified rabbit skeletal muscle myosin is phosphorylated on one type of light-chain subunit (P-light chain) by calmodulin-dependent myosin light chain kinase and dephosphorylated by phosphoprotein phosphatase C. Analyses of the time courses of both phosphorylation and dephosphorylation of skeletal muscle myosin indicated that both reactions, involving at least 90% of the P-light chain, were kinetically homogeneous. These results suggest that phosphorylation and dephosphorylation of rabbit skeletal muscle myosin heads are simple random processes in contrast to the sequential phosphorylation mechanism proposed for myosin from gizzard smooth muscle. We also examined the effect of phosphorylation of rabbit skeletal muscle myosin on the actin-activated ATPase activity. We observed an apparent 2-fold decrease in the Km for actin, from about 6 microM to about 2.5 microM, with no significant effect on the Vmax (1.8s-1) in response to P-light-chain phosphorylation. There was no significant effect of phosphorylation on the ATPase activity of myosin alone (0.045 s-1). ATPase activation could be fully reversed by addition of phosphatase catalytic subunit. The relationship between the extents of P-light-chain phosphorylation and ATPase activation (at 3.5 microM actin and 0.6 microM myosin) was essentially linear. Thus, in contrast to results obtained with myosin from gizzard smooth muscle, these results suggest that cooperative interactions between the myosin heads do not play an important role in the activation process in skeletal muscle. Since the effect of P-light-chain phosphorylation is upon the Km for actin, it would appear to be associated with a significant activation of ATPase activity only at appropriate concentrations of actin and salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Step changes in length (between -3 and +5 nm per half-sarcomere) were imposed on isolated muscle fibers at the plateau of an isometric tetanus (tension T0) and on the same fibers in rigor after permeabilization of the sarcolemma, to determine stiffness of the half-sarcomere in the two conditions. To identify the contribution of actin filaments to the total half-sarcomere compliance (C), measurements were made at sarcomere lengths between 2.00 and 2.15 microm, where the number of myosin cross-bridges in the region of overlap between the myosin filament and the actin filament remains constant, and only the length of the nonoverlapped region of the actin filament changes with sarcomere length. At 2.1 microm sarcomere length, C was 3.9 nm T0(-1) in active isometric contraction and 2.6 nm T0(-1) in rigor. The actin filament compliance, estimated from the slope of the relation between C and sarcomere length, was 2.3 nm microm(-1) T0(-1). Recent x-ray diffraction experiments suggest that the myosin filament compliance is 1.3 nm microm(-1) T0(-1). With these values for filament compliance, the difference in half-sarcomere compliance between isometric contraction and rigor indicates that the fraction of myosin cross-bridges attached to actin in isometric contraction is not larger than 0.43, assuming that cross-bridge elasticity is the same in isometric contraction and rigor.  相似文献   

7.
1. The effects of Ca(2+) and Mg(2+) on the enzymic activity of myosin were studied with myosin preparations treated by the ion-exchange resin Chelex-100. A reaction mixture containing 0.05m-potassium chloride was chosen in which the effects of univalent ions such as K(+), Na(+) and Cl(-) do not change significantly with small variations in their concentrations. 2. The relationship between the rate of hydrolysis of ATP or ITP and the concentration of Ca(2+) suggests that a relatively weak binding of Ca(2+) either to myosin or to the substrate nucleotide is responsible for the activation of the enzymic activity. According to the experiments with an ultrafiltration technique, the binding of Ca(2+) to myosin proceeds in at least two steps, the first occurring at one site on every 500000 atomic mass units of myosin with an apparent association constant, K(app.), 1.3x10(6)m(-1), and the second seeming to be so weak that its binding parameters cannot be determined by the method used. The first type of Ca(2+) binding is not observable with N-ethylmaleimide-modified myosin, yet this modified myosin shows activation by Ca(2+) of its adenosine triphosphatase and inosine triphosphatase. 3. The inhibition by Mg(2+) can be related to a binding reaction of Mg(2+) with myosin having K(app.) approximately 10(6)m(-1). Mg(2+) replaces the Ca(2+) bound tightly to myosin. The K(app.) for Mg(2+)-myosin binding calculated by assuming a competition between Ca(2+) and Mg(2+) for the same site is 2.1x10(5)-3.0x10(5)m(-1). When myosin is modified with a thiol reagent (p-mercuribenzoate) at a certain ratio to myosin, the inhibition by Mg(2+) becomes unobservable. 4. The behaviour of the hydrolytic activity of myosin on ATP or ITP in the presence of both Ca(2+) and Mg(2+) is consistent with the explanation that the inhibition by Mg(2+) is due to the tight binding of Mg(2+) to myosin, whereas the activation by Ca(2+) is caused either by a weak binding of Ca(2+) to myosin or by CaATP(2-) or by both.  相似文献   

8.
1. The myosin content of myofibrils was found to be 51% by SDS-gel electrophoresis. 2. The initial burst of Pi liberation of the ATPase [EC 3.6.1.3] of a solution of myofibrils in 1 M KCl was measured in 0.5 M KCl, and found to be 0.93 mole/mole of myosin. 3. The amount of ADP bound to myofibrils during the ATPase reaction and the ATPase activity were measured by coupling the myofibrillar ATPase reaction with sufficient amounts of pyruvate kinase [EC 2.7.1.40] and PEP to regenerate ATP. The maximum amount of ADP bound to myofibrils in 0.05M KCl and in the relaxed state was about 1.5 mole/mole of myosin. On the other hand, the ATPase activity exhibited substrate inhibition, and the amount of ATP required for a constant level of ATPase activity was smaller than that required for the maximum binding of ADP to myofibrils. 4. The maximum amount of ADP bound to myofibrils in 0.5 M KCl was about 1.9 mole/mole of myosin. When about one mole of ADP was found to 1 mole of myosin in myofibrils, the myofibrillar ATPase activity reached the saturated level, and with further increase in the concentration of ATP one more mole of ADP was found per mole of myosin.  相似文献   

9.
The effects of Mg2+, Mn2+, Zn2+, Co2+, Ni2+, Ca2+, and Sr2+ upon the equilibrium constant (K) and formation rate constant (k1) of H-meromyosin-ADP complex were studied. The affinity constant of ADP binding decreases in the following order Mn > Mg > Zn > Ni > Co > Sr ∼- Ca. The calculated dissociation rate constant (k2) of the enzyme-ADP complex was similar to the rate of ATP hydrolysis with all divalent metals tested, except Sr2+. With Mg as predominant metal ion the following dissociation constants were obtained for the binding of various nucleoside diphosphates to H-meromyosin: ADP 1–2 × 10−6m, UDP 2 × 10−5m, CDP 3 × 10−5m, IDP 10−4m. The results are compatible with the suggestion that at 6 °C the dissociation of ADP from the active site limits the rate of ATP hydrolysis with Mg2+, Mn2+, Co2+, and Ca2+.  相似文献   

10.
The metabolic stabilities of bound adenine nucleotides in a membrane-bound ATPase (EF1) [EC 3.6.1.3] of Escherichia coli were studied by estimating their rates of turnover in vivo. Two-thirds of the bound ATP prelabelled with 32Pi in EF1 molecules was retained after 3 h in a chase medium. The bound ADP was chased rapidly with a half time of decrease of less than 1 h, the rate similar to that of cytoplasmic free nucleotides. These results suggest that bound ATP in the EF1 is not a direct intermediate in oxidative phosphorylation.  相似文献   

11.
Plasma gelsolin formed a very tight 1:2 complex with G-actin in the presence of Ca2+, but no interaction between gelsolin and G-actin was detected in the presence of excess EGTA. However, the 1:2 complex dissociated into a 1:1 gelsolin:actin complex and monomeric actin when excess EGTA was added. Plasma gelsolin bound tightly to the barbed ends of actin filaments and also severed filaments in the presence of Ca2+ and bound weakly to the filament barbed end in the presence of EGTA. The 1:2 gelsolin-actin complex bound to the barbed ends of filaments but did not sever them. By blocking the barbed end of filaments with plasma gelsolin, we determined the critical concentration at the pointed end in 1 mM MgCl2 and 0.2 mM ATP to be 4 microM. The dissociation rate constant for ADP-G-actin from the pointed end was estimated to be about 0.4 s-1 and the association rate constant to be about 5 X 10(4) M-1 s-1. Finally, we obtained evidence that plasma gelsolin accelerates but does not bypass the nucleation step and, therefore, that the concentration of gelsolin does not directly determine the concentration of filaments polymerized in its presence. Thus, gelsolin-capped filaments may not provide an absolutely reliable method for determining the rate constant for the association of ATP-G-actin at the pointed ends of filaments, but a reasonable estimate would be 1 X 10(5) M-1 s-1 in 1 mM MgCl2 and 0.2 mM ATP.  相似文献   

12.
In experiments on isolated guinea pig papillary muscles the effects of verapamil (5 mg/L) and caffeine (1 g/L) on the two-component contraction were investigated. The muscles were continuously superfused with normal Tyrode's solution containing 2 mg of noradrenaline/L at 20--22 degrees C. The first derivative of contractile response and transmembrane action potential were simultaneously recorded. Verapamil suppressed the amplitude of the second component and had no influence on the first component of contraction. Caffeine eliminated the first component and increased the second component of contraction. It was suggested that in the activation of two-component contraction calcium ions from two different pools take part: (1) those released from sarcoplasmic reticulum, and (2) those that crossed a cell membrane during the plateau of the action potential.  相似文献   

13.
Thin filaments isolated from chicken gizzard smooth muscle in either the presence or the absence of Ca2+ possess identical caldesmon contents. Hence, a 'flip-flop' mechanism, involving Ca2+-dependent association and dissociation of caldesmon and thin filaments, does not appear to operate in vivo and is an unlikely model for caldesmon function.  相似文献   

14.
Structural and functional changes in myosin of fast muscles during early post-natal development were studied to seek correlations with well-known physiological changes in the contraction rate. The findings were as follows: 1. It is known that fetal fast muscle myosin contains three kinds of light chains. It was confirmed that their molecular weights were the same as those of adult fast muscle myosin, but different from those of adult slow muscle myosin. The amount of the smallest light chain, g3, was confirmed to increase markedly during the postnatal period. 2.The ATPase [EC3.6.1.3] activity of fetal fast muscle myosin (-1 day) was found to be about 50% of that of adult myosin. The pH-activity curve of fetal myosin ATPase was confirmed to be similar to that of adult myosin. 3. The rate of formation of the reactive myosin-phosphate-ADP complex, MADPP, was found not to change during post-natal development. 4. It was found that the rate of decomposition of MADPP in the presence of F-actin increased markedly during the post-natal period, and that the rate of decomposition of the complex of fetal mysoin was only 1/6 to 1/4 of that of adult myosin. The change in the actomyosin ATPase activity was found to be closely correlated with the increase in the g3 content during development.  相似文献   

15.
A M Hanel  W P Jencks 《Biochemistry》1991,30(47):11320-11330
The internalization of 45Ca by the calcium-transporting ATPase into sarcoplasmic reticulum vesicles from rabbit muscle was measured during a single turnover of the enzyme by using a quench of 7 mM ADP and EGTA (25 degrees C, 5 mM MgCl2, 100 mM KCl, 40 mM MOPS.Tris, pH 7.0). Intact vesicles containing either 10-20 microM or 20 mM Ca2+ were preincubated with 45Ca for approximately 20 s and then mixed with 0.20-0.25 mM ATP and excess EGTA to give 70% phosphorylation of Etot with the rate constant k = 300 s-1. The two 45Ca ions bound to the phosphoenzyme (EP) become insensitive to the quench with ADP as they are internalized in a first-order reaction with a rate constant of k = approximately 30 s-1. The first and second Ca2+ ions that bind to the free enzyme were selectively labeled by mixing the enzyme and 45Ca with excess 40Ca, or by mixing the enzyme and 40Ca with 45Ca, for 50 ms prior to the addition of ATP and EGTA. The internalization of each ion into loaded or empty vesicles follows first-order kinetics with k = approximately 30 s-1; there is no indication of biphasic kinetics or an induction period for the internalization of either Ca2+ ion. The presence of 20 mM Ca2+ inside the vesicles has no effect on the kinetics or the extent of internalization of either or both of the individual ions. The Ca2+ ions bound to the phosphoenzyme are kinetically equivalent. A first-order reaction for the internalization of the individual Ca2+ ions is consistent with a rate-limiting conformational change of the phosphoenzyme with kc = 30 s-1, followed by rapid dissociation of the Ca2+ ions from separate independent binding sites on E approximately P.Ca2; lumenal calcium does not inhibit the dissociation of calcium from these sites. Alternatively, the Ca2+ ions may dissociate sequentially from E approximately P.Ca2 following a rate-limiting conformational change. However, the order of dissociation of the individual ions can not be distinguished. An ordered-sequential mechanism for dissociation requires that the ions dissociate much faster (k greater than or equal to 10(5) s-1) than the forward and reverse reactions for the conformational change (k-c = approximately 3000 s-1). Finally, the Ca2+ ions may exchange their positions rapidly on the phosphoenzyme (kmix greater than or equal to 10(5) s-1) before dissociating. A Hill slope of nH = 1.0-1.2, with K0.5 = 0.8-0.9 mM, for the inhibition of turnover by binding of Ca2+ to the low-affinity transport sites of the phosphoenzyme was obtained from rate measurements at six different concentrations of Mg2+.  相似文献   

16.
The kinetic properties of the hydrolyses of 8-Br ATP and 8-SCH3 ATP by myosin [EC 3.6.1.3] and actomyosin were compared with those of ATP, and the following results were obtained. The Ca-NTPase activities of myosin using these two ATP analogs as substrates were smaller than that of ATPase, and the NTPase activities toward these analogs were strongly suppressed by EDTA. The Mg-NTPase activities toward these analogs were higher in a medium of high ionic strength than in a medium of low ionic strength, in contrast to the activity of Mg-ATPase. These analogs did not produce any initial burst of Pi liberation, activation of myosin NTPase by F-actin, or superprecipitation of actomyosin. The interactions between 8-Br ATP and HMM, acto-HMM, actomyosin, and myofibrils were studied in detail in the presence of Mg2+ in medium of low ionic strength. The Michaelis constant, Km, and the maximum rate, Vm, of 8-Br ATPase of HMM were 27 muM and 21 min-1, respectively. The fluorescence change of HMM induced by 8-Br ATP also followed the Michaelis-Menten equation, and the Michaelis constant, Kf1, was as low as 4 muM. Acto-HMM and acto-S-1 were fully dissociated by the addition of 8-Br ATP. The relation between the extent of dissociation of acto-HMM and the concentration of 8-Br ATP followed the Michaelis-Menten equation, and the apparent dissociation constant, Kd, was 22 muM. This Kd value is almost equal to the Km value of 8-Br ATPase of HMM described above. Myofibrillar contraction was not supported by 8-Br ATP. It was concluded that in the myosin NTPase reaction with 8-Br ATP as a substrate, M2NTP but not MNDPP is formed in route (1), while MNTP is formed in route (2). It was also concluded that the key intermediate for the actomyosin NTPase reaction is MNDPP, and that dissociation of acto-HMM is induced by the formation of M2NTP and MNTP in routes (1) and (2), respectively.  相似文献   

17.
E J Findlay  P G Barton 《Biochemistry》1978,17(12):2400-2405
Using differential thermal analysis, scanning calorimetry and light scattering, transition temperatures and enthalpy data for the gel to liquid crystalline phase transitions of five synthetic phosphatidylglycerol sodium salts (PG-Na+) were measured. The values obtained were almost identical with literature values for the corresponding phosphatidylcholines (PC). However, transition temperatures for the fully protonated forms of the saturated phosphatidylglycerols (PG-H+) were approximately 20 degrees C higher. For binary mixtures of PG-Na+ and PC in which the acyl chains of the two species were identical, the width of the thermal transition for the phase change was not appreciably greater than that observed with either of the two components alone. In contrast, mixing of PG-Na+ and PC with different chain lengths increases the transition width. In the presence of Ca2+, narrow transitions were also observed with mixtures of PG and PC when the chain length of the PG-Ca2+ was equal to or two carbons shorter than the PC but the transition width was clearly increased when the chain length of the PG-Ca2+ was two carbons longer than the PC. Mixing lipids with greater differences in chain length or mixing saturated lipids with unsaturated lipids in the presence of Ca2+ produced two minima in the thermograms, clearly indicative of phase separation. In sum, these results provide evidence for a high degree of miscibility of the phosphoglycerol and phosphocholine head groups, either in the presence or absence of Ca2+, such that the characteristic phase behavior of each mixture is determined primarily by differences in the hydrocarbon chain structure.  相似文献   

18.
The position of paramyosin in insect flight muscle was determined by labelling myofibrils with antibody to paramyosin and examining them by fluorescent and electron microscopy.Antiserum to dung beetle paramyosin had antibodies to another protein as well as to paramyosin. Specific anti-paramyosin bound to the H-zone of Lethocerus myofibrils showing paramyosin was exposed only in that region. Antibodies to the other protein bound at the ends of the A-band.The exposure of antigenic sites in the two regions of the myofibril depended on the extent of contraction in the myofibril: the sites at the end of the A-band were most exposed in rest-length myofibrils and those at the H-zone in shortened ones.Antibody-labelling in stretched bee muscle showed that the protein at the ends of the sarcomere extended from myosin filaments to Z-line.The high resting elasticity of insect flight muscle and hence its capacity for oscillatory contraction may be due to the protein between myosin filaments and Z-line.  相似文献   

19.
Heavy meromyosin prepared from rabbit skeletal myosin by chymotryptic digestion was separated into two different heavy meromyosins by Sepharose 4B-6 aminohexyl PPi column chromatography. SDS-gel electrophoresis of one fraction of heavy meromyosin, which was eluted with 75 mM ammonium acetate, showed that it contained the small polypeptide chains, g3 and g2, as well as the large chains. The other fraction of heavy meromyosin, which was eluted with 85 mM ammonium acetate, contained g1 and g2. We concluded that the two heavy meromyosins arose from two different populations (isozymes) of myosin. No significant difference in Ca2+-ATPase activity was detected between the two heavy meromyosins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号