首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prof. Fumio Oosawa passed away in Nagoya on March 4, 2019, at the age of 96. As two of his former students we, like a great many scientists both in Japan and around the world, were much inspired and influenced by him. We have, at the request of the journal, penned this note to describe some of his major scientific contributions and also provide the readers of Biophysical Reviews with an idea of the remarkable personality and character traits that he displayed throughout his life. Fumio Oosawa (or Oosawa-san as he preferred to be called) was a physicist who initially entered the area of biophysics through studies in the field of condensed matter phenomena. Although a remarkable human being, he was, first and foremost, one of the leading scientists of his generation, making many original contributions that could, by any measure, be described as scientific breakthroughs. Therefore, before providing a short biography of his life in and around science, we thought it most appropriate to begin this Letter by first summarizing his major scientific contributions.  相似文献   

2.
Prasanna K. Mohanty, a great scientist, a great teacher and above all a great human being, left us more than a year ago (on March 9, 2013). He was a pioneer in the field of photosynthesis research; his contributions are many and wide-ranging. In the words of Jack Myers, he would be a “photosynthetiker” par excellence. He remained deeply engaged with research almost to the end of his life; we believe that generations of researchers still to come will benefit from his thorough and enormous work. We present here his life and some of his contributions to the field of Photosynthesis Research. The response to this tribute was overwhelming and we have included most of the tributes, which we received from all over the world. Prasanna Mohanty was a pioneer in the field of “Light Regulation of Photosynthesis”, a loving and dedicated teacher—unpretentious, idealistic, and an honest human being.  相似文献   

3.
The interest of F. Macfarlane Burnet in host–parasite interactions grew through the 1920s and 1930s, culminating in his book, Biological Aspects of Infectious Disease (1940), often regarded as the founding text of disease ecology. Our knowledge of the influences on Burnet’s ecological thinking is still incomplete. Burnet later attributed much of his conceptual development to his reading of British theoretical biology, especially the work of Julian Huxley and Charles Elton, and regretted he did not study Theobald Smith’s Parasitism and Disease (1934) until after he had formulated his ideas. Scholars also have adduced Burnet’s fascination with natural history and the clinical and public health demands on his research effort, among other influences. I want to consider here additional contributions to Burnet’s ecological thinking, focusing on his intellectual milieu, placing his research in a settler society with exceptional expertise in environmental studies and pest management. In part, an ‘‘ecological turn’’ in Australian science in the 1930s, derived to a degree from British colonial scientific investments, shaped Burnet’s conceptual development. This raises the question of whether we might characterize, in postcolonial fashion, disease ecology, and other studies of parasitism, as successful settler colonial or dominion science.  相似文献   

4.
In part I of this series, the theory of irreversible thermodynamics was applied to the sliding filament model to obtain rate equations for a contracting muscle at the in situ length lo. In this paper we extend the theory to include length variations derived from the sliding filament model of contracting muscle using the work of Gordon, Huxley, and Julian (1). Accepting the validity of Hill's forcevelocity relation (2) at the in situ length, we show that Hill's equation is valid for any length provided that the values of the parameters, a, b, and Vm vary with length as derived herein. The predicted variation with length of the velocity for a lightly loaded isotonic contraction is shown to agree well with that measured by Gordon, Huxley, and Julian (1). Chemical rates are derived as functions of length using parameters that can be obtained experimentally.  相似文献   

5.
《Gene》1997,192(1):155-163
Type-IV pilus expression plays a critical role in the interactions between Neisseria gonorrhoeae, Neisseria meningitidis and their human host. We have focused on experiments designed to elucidate the mechanisms of organelle biogenesis as one means of understanding the complexities of pilus biology in these species. Employing a variety of approaches, genes and gene products essential to pilus biogenesis have been identified and characterized. The findings indicate that the neisserial type-IV pilus biogenesis machinery is most closely related to that operating in Pseudomonas aeruginosa and other pseudomonad species. This interrelatedness is documented at the levels of gene organization, DNA homologies and identities between the primary structures of the components. Despite these similarities, the biological correlates of pilus expression in the pathogenic Neisseria are quite unique. The current status of our embryonic understanding of the factors influencing organelle biogenesis is presented. In the context of this workshop, emphasis has been placed on specific contributions made through studies of gonococci and meningococci to the field as a whole.  相似文献   

6.
7.
《Journal of Asia》2014,17(4):901-905
The Japanese hornfaced bee, Osmia cornifrons Radoszkowski (Hymenoptera: Megachilidae), is an important pollinator of apple. It overwinters as diapausing adult in cocoon and the synchronization of the adult emergence in spring with apple blossom is critical for successful pollination, specifically in the environment with variable climate. To this end, prediction model of adult emergence would help manage O. cornifrons populations for planed pollination. In this study, by using temperature-dependent emergence data of O. cornifrons, emergence rate were mathematically described using linear and Lactin's nonlinear regression methods. The lower emergence thresholds estimated from linear regression for female was 7.98 °C and the thermal constant (DD, degree days) was 112.43DD. Pattern of emergence completion was described by using Weibull function and prediction of spring emergence was modeled based on functions of emergence rate and distribution. The model predicted the emergence of O. cornifrons between 100–130 Julian date and the observation fell between 108–129 Julian date. The prediction ranges of O. cornifrons emergence were wider than that of observation. This model could help predict spring emergence of O. cornifrons in the field and optimize planed pollination program for pollination service in agricultural systems in the climate change era.  相似文献   

8.
Processivity of DNA Exonucleases (Thomas, K. R., and Olivera, B. M. (1978) J. Biol. Chem. 253, 424–429)Neuronal Calcium Channel Inhibitors. Synthesis of ω-Conotoxin GVIA and Effects on 45Ca Uptake by Synaptosomes (Rivier, J., Galyean, R., Gray, W. R., Azimi-Zonooz, A., McIntosh, J. M., Cruz, L. J., and Olivera, B. M. (1987) J. Biol. Chem. 262, 1194–1198)The two papers being recognized here as JBC Classics speak to the journeys Baldomero “Toto” Olivera at the University of Utah has made in his life. A director of a program project funded by the National Institute of General Medical Sciences and a professor at the Howard Hughes Medical Institute, Olivera''s papers highlight how doing research in two different countries ultimately influenced his focus and contributions to molecular biology and biochemistry.Open in a separate windowBaldomero “Toto” Olivera. Photo courtesy of Olivera.Olivera began his career as a DNA biophysical chemist and enzymologist. He arrived in the United States in the 1960s to do his graduate work at the California Institute of Technology after completing a bachelor''s degree in chemistry in the Philippines. He joined the laboratory of Norman Davidson to study the biophysical chemistry of DNA. When Olivera was ready to graduate with his Ph.D. degree, Davidson suggested that Olivera go to I. Robert Lehman''s laboratory at Stanford University for his postdoctoral training. “He knew it was my intention to return to the Philippines,” recalls Olivera. Davidson felt it would be easier for Olivera to study DNA enzymology, rather than biophysical chemistry, in a Philippine academic setting because the field did not necessarily demand expensive and sophisticated instrumentation.Olivera followed his thesis advisor''s suggestion and, as a result, became an expert in DNA enzymology, including exonucleases, a large class of DNA-degrading enzymes. The first JBC paper recognized here as a Classic was published in 1978 as Olivera was starting out as an independent researcher. In it, Olivera and his first graduate student, Kirk Thomas, investigated whether or not exonuclease I, first discovered in Escherichia coli by Lehman, and other exonucleases of E. coli were processive. This was at a time when little was known about nucleic acid enzymes: restriction enzymes were just starting to gain traction, and genome sequencing was far from reality. Olivera explains that no one had given much thought to how exonucleases functioned. “The significance of this paper was that it showed that the enzymes that we examined were very different using a new parameter processivity that had never been assessed for exonucleases,” he says.Olivera and Thomas designed an assay that was based on a synthetic nucleic acid chain that contained 3H on one end and 32P on the other. Researchers knew that exonucleases selected either the 5′- or 3′-end of the DNA to start chewing. The rationale of the Thomas and Olivera assay was that if the enzyme dissociated after every single catalytic event, one label, either the 3H or 32P, would come off the polymer. However, if the enzyme clung to the polymer and kept chewing until the whole polymer was degraded, both radioactive labels would appear simultaneously in solution.Open in a separate windowOlivera with his first graduate student, Kirk Thomas. Photo courtesy of Olivera.Thomas and Olivera demonstrated that of the eight exonucleases they tested, only the E. coli exonuclease I and λ-exonuclease were processive, meaning that once they got started, they kept on cutting the same piece of DNA before dissociating. The others, such as the spleen and T7 exonucleases, were not processive and frequently came off the DNA.Lehman explains that at the time of this JBC paper, “methods had not yet been developed to measure quantitatively the processivity of either a DNA polymerase or a DNA exonuclease. Their paper made an important contribution to the field of DNA enzymology by describing for the first time a quantitative method for doing so and applied it to eight different DNA exonucleases, an enzymological tour de force.”The second paper highlighted as a JBC Classic was published ten years later and shows a shift in Olivera''s career. The article concerns the synthesis of a peptide found in the venom of the cone snail Conus geographus, which is indigenous to the Indo-Pacific region. All 700 types of cone snails have a special tooth that they use like a harpoon. A venom gland attached to the tooth releases the poisonous peptides to paralyze or even kill prey. These snails have to be handled with great care or not handled at all. Some can sting and cause pain like bees, but C. geographus can kill humans when it stings.There is no scientific connection between DNA enzymes and snail venom. Olivera explains that when he had returned to the Philippines as an assistant professor in the College of Medicine at the University of the Philippines, his laboratory “had absolutely no equipment. It was clear I wasn''t going to be very competitive in DNA replication [research], so we decided we''d find a project that we could start without any equipment. I collected shells as a kid, so I knew about this particular snail that killed people. I had purified enzymes as a post-doc and figured I could purify toxins by injecting them into mice, which didn''t require any equipment at all.”Olivera''s group was soon isolating and characterizing peptides from the cone snail venom. The peptides are known as conotoxins. In doing so, Olivera established the field of conotoxin research, which had a significant impact on fundamental research and medicine. For example, a peptide isolated by Olivera''s group has been approved as a drug for severe pain that cannot be relieved by morphine.Olivera had part-time appointments in the United States while maintaining his full-time position in the Philippines. He first began as a visiting associate professor at Kansas State University and later at the University at Utah. “I would spend seven or eight months in the Philippines and five or four months in the U.S,” he says. Olivera became a full-time member of the faculty at the University of Utah in the 1970s after political and economic upheaval in the Philippines over Ferdinand Marcos'' rule made Olivera decide to return full-time to the United States.Open in a separate windowConus snails. Photo courtesy of Olivera.Open in a separate windowConus snail attacks a fish. Photo courtesy of Olivera.The toxins made by the Conus snails are highly specific for particular targets in the nervous system, such as ion channels. For example, the μ-conotoxins hit sodium receptor ion channels, and ω-conotoxins (one of which, ω-GVIA, is described in this JBC Classic) bind to neuronal calcium channels to inhibit calcium uptake at the presynaptic junction and shut down biochemical signaling at certain synapses.ω-Conotoxin GVIA is a 27-amino acid peptide originally called the “shaker” peptide because it made mice shake. “A number of physiological experiments were done to suggest that it acted at synapses, potentially on calcium channels,” says Olivera. “The importance of this paper is that for the first time the peptide was chemically synthesized and became available to the whole neuroscience community.”The neuroscience community desperately needed this peptide. Up to this point, neuroscientists relied on dihydropyridines to study voltage-gated calcium channels. However, these dihydropyridines had confusing effects on neuronal voltage-gated calcium channels, which made data interpretation difficult. With ω-conotoxin GVIA as a synthetic peptide, neuroscientists now had a molecular tool that clearly targeted a very specific type of neuronal voltage-gated calcium channel.The peptide was short enough to be amenable to synthesis, and Olivera is grateful to his collaborator, Jean Rivier, who was an expert in synthesizing neuropeptides, for the successful synthesis of this peptide. The peptide had only 27 amino acids but contained three disulfide bonds, “so there were fifteen possible isomers,” recalls Olivera. “You had to get the cross-linking right to end up with the biologically active isomer.”The advantage was that Olivera and colleagues had purified the native peptide, so they could compare their synthesis attempts with the native molecule. “At the beginning, we didn''t even know what the true disulfide bonding was, so we did the work qualitatively to just show the synthetic material and native material co-eluted in a column.” The investigators later established how the disulfide bonds were arranged. Rivier, Olivera, and the rest of the team went on to show that their synthetic peptide behaved just like the natural one in inhibiting calcium entry at chicken synaptosomes and was biologically active.John Exton at Vanderbilt University says “The conotoxins have proved to be extremely important molecular probes in neuroscience in defining functional roles for many receptors and ion channels.”When the paper was published, Olivera was deluged with requests for the peptide. Rivier had been able to synthesize a sizeable amount, and because it was active at subpicomolar concentrations, a little bit of it went a long way. Olivera was able to distribute the peptide, and eventually, several commercial enterprises got into the business of producing and supplying it.“I believe there is something on the order of two thousand studies in the literature using this particular peptide,” says Olivera. “It''s interesting that there are hundreds of thousands of peptides in Conus venom that we call conotoxins. But among physiologists, if you say conotoxin, this is the peptide they think of because this is the one that''s most widely used.” In fact, points out Olivera, when the neuronal calcium channel was purified eight years later, it was actually called the conotoxin receptor.  相似文献   

9.
Sears CL 《Anaerobe》2012,18(2):192-196
Dr. Sydney Finegold is one of the most heralded leaders in the discovery, classification and scientific knowledge of anaerobic bacteria. On this occasion of his 90th birthday, this paper celebrates his lifetime of accomplishments and provides a perspective on the changes and growth in our understanding of one anaerobic species, Bacteroides fragilis. Over the last nearly 40 years, clinical and research data have fostered our current view that B. fragilis are essential symbiotes as well as, in some circumstances, pathogens with the capacity to induce both acute systemic and abdominal illnesses and possibly chronic colonic diseases.  相似文献   

10.
Patrice Codogno 《Autophagy》2016,12(6):1063-1068
Patrice Codogno (Fig. 1), one of the associate editors of Autophagy since it was established, is well known in the autophagy field, and has played a particularly important role in France, serving as the first president of Club Francophone de l'AuTophaGie (CFATG). Patrice's research career spans from the predominantly biochemical analyses that were commonly used in the 1980s to the molecular studies that are the primary focus of many labs currently studying autophagy today. Anyone who has met Patrice knows that he is modest, which means his contributions to autophagy and to promoting the careers of scientists globally, are underappreciated. In addition, there is a fun-loving side to Patrice that is often hidden to the casual observer, and it is time to share some of his personality and thoughts with the rest of the autophagy community.  相似文献   

11.
Thomas A. Zanoni 《Brittonia》1980,32(4):551-571
Otto Kuntze (1843–1907) is renowned for hisRevisio generum plantarum in which he changed thousands of plant names in accordance with his revision of the 1867 Paris Code of Botanical Nomenclature. His contributions to plant taxonomy, based on his world-wide collecting trips, and his monographs are not as well known. A short biographical sketch and bibliography of Kuntze’s natural history and plant taxonomy publications are included with detailed enumeration of localities and dates for trips around the world in 1874–1876 and 1904, to southern U.S.S.R. in 1886, to the Canary Islands and Madeira in 1887–1888, to South America in 1891–1893 and to southern Africa in 1894. Herbaria housing Kuntze specimens are cited. The majority of the type specimens are at the New York Botanical Garden.  相似文献   

12.
Garland E. Allen’s 1978 biography of the Nobel Prize winning biologist Thomas Hunt Morgan provides an excellent study of the man and his science. Allen presents Morgan as an opportunistic scientist who follows where his observations take him, leading him to his foundational work in Drosophila genetics. The book was rightfully hailed as an important achievement and it introduced generations of readers to Morgan. Yet, in hindsight, Allen’s book largely misses an equally important part of Morgan’s work – his study of development and regeneration. It is worth returning to this part of Morgan, exploring what Morgan contributed and also why he has been seen by contemporaries and historians such as Allen as having set aside some of the most important developmental problems. A closer look shows how Morgan’s view of cells and development that was different from that of his most noted contemporaries led to interpretation of his important contributions in favor of genetics. This essay is part of a special issue, revisiting Garland Allen's views on the history of life sciences in the twentieth century.  相似文献   

13.
Laurent Loison 《Genetics》2013,195(2):295-302
This Perspectives is devoted to the ideas of the French zoologist Georges Teissier about the mechanisms of evolution and the relations between micro- and macroevolution. Working in an almost universally neo-Lamarckian context in France, Teissier was one of the very few Darwinians there at the time of the evolutionary synthesis. The general atmosphere of French zoology during the 1920s and the 1930s will first be recalled, to understand the specific conditions in which Teissier became a zoologist. After a brief overview of his joint work with Philippe L’Héritier on the experimental genetics of Drosophila, this article describes the ways Teissier, during the 1950s, conceptualized the mechanisms that could allow for macroevolutionary transitions.IT is usually acknowledged that France did not significantly participate in the elaboration of 20th century evolutionary theory, often designated The Modern Synthesis. In their classical book on the history of the synthesis, Ernst Mayr and William B. Provine devoted a whole—nonetheless small—chapter to this specific issue (Mayr and Provine 1998, pp. 309–328). Mayr clearly stated that “France is the only major scientific nation that did not contribute significantly to the evolutionary synthesis” (Mayr 1998, p. 309). In the absence of a French architect of the synthesis, Mayr and Provine asked Ernest Boesiger, a Swiss population geneticist and a former student of Georges Teissier, to tell the story of what had happened in French biology at the time of the evolutionary synthesis. Boesiger, who died in 1975, wrote a paper in 1974 that provided the firm basis of the chapter. In very strong terms, he depicted French biology as “a kind of living fossil in the rejection of modern evolutionary theories” (Boesiger 1998, p. 309). He insisted on the fact that, even in 1974, most French biologists and philosophers were still reluctant to accept Darwinism. As regards the period of the 1930s, Boesiger was able to think of only two exceptions: Georges Teissier and Philippe L’Héritier. He then referred to their joint research in population genetics, which was based on the new technique of the population cages with the species Drosophila melanogaster, and listed their contributions to this new discipline.If Teissier and L’Héritier’s works on Drosophila are nowadays more widely recognized than in 1974, due in particular to the efforts of Jean Gayon and Michel Veuille (Gayon and Veuille 2001), this recognition could have as an unintended consequence the reduction of both Teissier and L’Héritier to being simply the inventors of a useful technique, namely the population cages (see especially how Mayr presented their work in his other classical book, Mayr 1982, p. 574), or as the founders of a French school of population geneticists (Gayon and Veuille 2001). The aim of this article is to reevaluate the way Georges Teissier (1900–1972) conceived Darwinian natural selection not only as an important mechanism for evolution at the population level but more fundamentally as a general key for the unification of biology, exactly as Julian Huxley or Ernst Mayr did during the same period (1930–1970). However, starting in the early 1950s, Teissier went on to conceive a very specific understanding of the evolutionary synthesis.In this article, I will first describe the general atmosphere of evolutionary issues in French biology at the time when Teissier started working as a zoologist, to understand against what he developed his joint research program with L’Héritier and afterward his general conceptions about evolution. During the 1930s and the 1940s, only a very few scientists in France could be seen as Darwinians. In addition to Teissier and L’Héritier, one may also consider Marcel Prenant, Boris Ephrussi, and the mathematician Gustave Malécot. Building on Jean Gayon and Michel Veuille’s work, I will then give a quick overview of L’Héritier and Teissier’s most important achievements in the field of population genetics. In the third part, I will discuss the discovery made by Teissier and L’Héritier of a case of cytoplasmic inheritance in Drosophila. This unexpected finding led them into the field of non-Mendelian heredity. I will then develop in detail the way Teissier finally went on to conceive the relation between microevolution and macroevolution, in light of the general context of French biology and of the development of the field of cytoplasmic inheritance.  相似文献   

14.
Dr. Haifan Lin is professor of Cell Biology at Yale University, where he studies the mechanism of stem cell self-renewal in fruit flies, mice, and human cancer cells. Recently named director of the Yale Stem Cell Center, Dr. Lin has made seminal contributions to the stem cell field, most notably his demonstration of the stem cell niche theory using the fruit fly model, his discovery of the PIWI/AGO gene family that is essential for stem cell division in diverse organisms, and his recent finding of a group of small RNAs called PIWI-interacting, or piRNAs, which may play a crucial role in stem cell proliferation and germline development. Dr. Lin’s work on piRNAs was recognized by Science Magazine as a top scientific breakthrough of 2006. Recently, the Lin lab has begun exploring the role of these molecules in stem cell division and oncogenesis.  相似文献   

15.
Release of dissolved organic matter (DOM) was studied on macroalga, Ecklonia cava Kjellman, by in situ field bag experiments, which were designed to keep the algal body under natural field condition, in Oura Bay, Shimoda, Izu Peninsula, Japan, from August 2003 to May 2005. The experiments were conducted 6 times in different seasons. The concentrations of dissolved organic carbon (DOC) in the experimental bag generally increased during the first 1-2 days, showing the release of DOC from algae. The daily release rates of DOC varied between 0.12 and 5.8 mgC per g (dry wt) of the algal blades per day. The seasonal variability of the DOC release rate was similar to those of the growth and the photosynthetic rates reported by the previous studies on E. cava in the same location. The fractions of the DOC release of the net primary production accounted for 18-62%. These contributions are comparable to other macroalgae in the previous studies (27-43%) using other macroalgae. Analysis of organic composition of DOM using gas chromatography (neutral aldose composition) and spectrometry (UV-visible and fluorescence) indicates that E. cava usually release extracellular products containing mucilaginous polysaccharides containing fucose as a main constituent and colored dissolved organic matter (CDOM). The release of these organic compounds is likely performed as the ordinary metabolism of brown algae. An exceptional release of a considerable amount of protein and carbohydrates mainly composed of mannose was found in June 2004, probably reflecting leakage of the intracellular material by an autolysis of the algal cells. The high DOM release rate in the present study suggests that macroalgae would be one of the important DOM producers in coastal regions.  相似文献   

16.
Synthesis, accumulation, and turnover of basement membrane components have been studied in organ cultures of 13.5- and 14.5-day embryonic rat parietal yolk sac tissues on a nutrient agar substrate. The biochemical studies described in this report were correlated with morphologic and autoradiographic studies described in the companion paper (Minor et al., Develop. Biol.48, 1976). These studies showed that basement membrane is the only extracellular matrix synthesized, it is only synthesized by the parietal endodermal cells, and its synthesis is maintained for at least 6 days. In these cultures, synthesis and degradation of collagen and noncollagen proteins varied independently in response to environmental changes, such as the frequency of feeding or presence of trophoblast. The turnover of basement membrane collagen was much slower than that of the noncollagen proteins and this difference in the rate of turnover of the components had a major role in determining the composition of the newly synthesized basement membrane.  相似文献   

17.
The kinetic behavior andpH-stability of recombinant human renin was analyzed using a new fluorogenic substrate based on the normal P6-P3′ renin cleavage sequence in human angiotensinogen. The design of this fluorogenic substrate makes possible, for the first time, direct monitoring of the kinetics of proteolytic conversion of prorenin to renin. ThepH-stability profile for renin, measured with the substrate at 25°C, indicated a broad plateau of stability betweenpH 6.0 and 10.0. Analysis of thepH-activity profile of renin for the substrate indicated a minimumK m (~1.8 µM) atpH ~7.4 and a maximumV m betweenpH 7.4 and 8.0. The thermodynamics of the binding of a novel, soluble, peptidomimetic inhibitor to renin indicated it is possible to retain the tight-binding characteristics and enthalpy contributions to binding of larger peptide-derived inhibitors, while reducing inhibitor size and entropic contributions to binding. A novel derivative of the fluorogenic substrate, containing a 3-methyl histidine substitution at the P2 site, was used to test the recent hypothesis that renin functions by virtue of substrate-directed catalysis.  相似文献   

18.
The so called races of Drosophila paulistorum from South America are so deeply isolated ethologically that although still partially bridged by gene flow through hybridization, they should be considered as 6 separate sibling species just as the willistoni group to which D. paulistorum itself belongs. The present article emphasizes the way in which isolation is implemented.This paper is dedicated to him on his 72nd birthday for his many contributions to our field.  相似文献   

19.
The social environment in which an animal lives can profoundly impact its physiology, including glucocorticoid (GC) responses to external stressors. In social, group-living species, individuals may face stressors arising from regular interactions with conspecifics as well as those associated with basic life history needs such as acquiring food or shelter. To explore the relative contributions of these two types of stressors on glucocorticoid physiology in a communally breeding mammal, we characterized baseline GC levels in female colonial tuco-tucos (Ctenomys sociabilis), which are subterranean rodents endemic to southwestern Argentina. Long-term field studies have revealed that while about half of all yearling female C. sociabilis live and breed alone, the remainder live and breed within their natal group. We assessed the effects of this intraspecific variation in social environment on GC physiology by comparing concentrations of baseline fecal corticosterone metabolite (fCM) for (1) lone and group-living yearling females in a free-living population of C. sociabilis and (2) captive yearling female C. sociabilis that had been experimentally assigned to live alone or with conspecifics. In both cases, lone females displayed significantly higher mean baseline fCM concentrations. Data from free-living animals indicated that this outcome arose from differences in circadian patterns of GC production. fCM concentrations for group-living animals declined in the afternoon while fCM in lone individuals did not. These findings suggest that for C. sociabilis, stressors associated with basic life history functions present greater challenges than those arising from interactions with conspecifics. Our study is one of the first to examine GC levels in a plural-breeding mammal in which the effects of group-living are not confounded by differences in reproductive or dominance status, thereby generating important insights into the endocrine consequences of group-living.  相似文献   

20.
This article was to have been written by Kees Weijer, an outstanding pioneer in Dictyostelium research. It was (and is) to celebrate J.T. Bonner’s and Weijer’s contributions to the field and those of the other great pioneers. Unfortunately, Weijer was unable to write his article, due to ill health and since I have some knowledge of this field, I took it over. The article summarises some main results and ideas in Dictyostelium research and their relevance for development of more advanced organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号