首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detailed interpretation of triose phosphate isomerase (TPI) isozymes in seed plants has been restricted to only a few species. Three sets of TPI bands are regularly observed in the cherimoya(Annona cherimola), a primitive angiosperm. The slowest, set I, is expressed as one or three bands; the second-slowest set II, as one or two bands; and the fastest, set IV, as one or three bands. A faint set III, just cathodal to set IV, is detected rarely with overstaining. Set IV bands are expressed in macerated extracted pollen but not in pollen leachate. Dissociation-reassociation experiments reveal that the set II bands are heterodimers involving, in part, the enzymes involved in the set I bands. These data combined with those from full-sib progeny analysis lead us to propose a three-locus model to explain the TPI isozyme banding patterns in cherimoya. Sets I and IV consist of the allelic products of individual, single loci. Sets I and II occur in the cytoplasm. Set IV occurs in organelles. Set II isozymes are the intergenic heterodimers of the locus coding for set I and the locus coding for set III. Our results reported here are contrasted with the TPI isozyme patterns known for other vascular plants and suggest that the locus coding for set III may be a duplication of very ancient origin.This work was supported, in part, by funding from the Elvenia J. Slosson Endowment Fund.  相似文献   

2.
Two linked genes, Adh1 and Adh2, specify three sets of ADH isozymes in pearl millet. Set I is a homodimer specified by Adh1, Set III is a homodimer specified by Adh2, and Set II is a heterodimer consisting of one ADH1 subunit and one ADH2 subunit. Dry seeds exhibit only Sets I and II. Anaerobic treatment of seeds greatly increases the activity of Sets I and II and causes the Set III isozymes to be expressed. In the investigation reported here, the ADH zymogram phenotypes of 112 inbred pearl millet lines were analyzed. Two kinds of naturally occurring ADH variant strains were observed: in the low-activity variant, Set II activity is low in the dry seed, and no Set III activity is present upon anaerobic treatment. In the high-activity variant, Set II activity is high and Set III isozymes are expressed in the dry seed. The mutation in the high-activity strain appears to affect the product of Adh2 and not the product of Adh1. Dominance tests show that the mutations in both types of variant strains act in cis. These observations and linkage tests indicate that the mutations are closely linked to or at the Adh2 locus.This work was supported by a PHS National Research Service Award Training Grant in Genetics to the Biology Department of the University of Oregon.  相似文献   

3.
Phosphoglucomutase (PGM; EC 2.7.5.1) isozyme variants were studied in a large number of inbred lines, crosses, and races of maize (Zea mays L.). Patterns of Mendelian inheritance demonstrated for PGM isozyme variants indicated that they are encoded by nuclear genes. Two unlinked loci, Pgm1 and Pgm2, located on the long arm of chromosome 1 and the short arm of chromosome 5, respectively, specify the observed electrophoretic variation on starch gels. No intra- or interlocus hybrid bands were found, suggesting that each isozyme band consists of a single polypeptide. PGM isozymes were present in all plant parts studied and the activity specified by both loci appears to reside in the cytoplasm. In studies of 520 racial collections of maize from Latin America, a single allele at each locus predominated in most collections. Likewise, the same alleles predominated in a set of 406 inbred lines of maize from the United States and Canada.This work was supported in part by NIH Research Grant GM 11546.Paper No. 8496 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina.  相似文献   

4.
Pearl millet (Pennisetum typhoides) produces three ADH isozymes, sets I, II, and III, with set III being expressed only in anaerobically treated seeds or seedlings. Variant strains have been identified which produce ADH isozymes with altered electrophoretic mobilities for sets I and II but not for set III activity. Based on genetic analysis of these variants and on dissociation-reassociation experiments, we propose that the three ADH isozymes are dimers of subunits coded by two structural genes, Adh1 and Adh2, with set I being a homodimer specified by Adh1, set III a homodimer specified by Adh2, and set II a heterodimer formed between the products of Adh1 and Adh2.This work was supported by BRSG Grant RR 07080 awarded by the Biomedical Research Grant Program, Division of Research Grants, National Institutes of Health, to D. R. H., and by funds from the Margenroth Endowment to F. B.-B., who is a PHS Research Service Award Trainee in Genetics.  相似文献   

5.
Roose  M. L. 《Biochemical genetics》1984,22(7-8):631-643
The alcohol dehydrogenase (ADH) isozymes induced in flooded roots of the diploid plant Stephanomeria exigua are specified by tightly linked genes comprising a complex locus, Adh1. Individuals homozygous for a complex with two active genes which specify electrophoretically different subunits have three ADH-I isozymes, two intragenic homodimers and an intergenic heterodimer. Individual isozymes were partially purified from plants homozygous for several different Adh1 complexes and apparent K m values for acetaldehyde, ethanol, NAD, and NADH and responses to temperature, pH, and two different alcohols were determined. The two homodimeric enzymes specified by a particular Adh1 complex generally differed in one or more of the properties studied, and in three of four cases, intergenic heterodimers differed significantly from intermediacy, often having lower K m values than either homodimer. None of the isozymes studied could be considered greatly divergent or defective. Constraints on evolution of duplicate genes which form intergenic heterodimers are considered.  相似文献   

6.
A genetic linkage map for loblolly pine (Pinus taeda L.) was constructed using segregation data from a three-generation outbred pedigree consisting of four grandparents, two parents, and 95 F2 progeny. The map was based predominantly on restriction fragment length polymorphism (RFLP) loci detected by cDNA probes. Sixty-five cDNA and three genomic DNA probes revealed 90 RFLP loci. Six polymorphic isozyme loci were also scored. One-fourth (24%) of the cDNA probes detected more than 1 segregating locus, an indication that multigene families are common in pines. As many as six alleles were observed at a single segregating locus among grandparents and it was not unusual for the progeny to segregate for three or four alleles per locus. Multipoint linkage analysis placed 73 RFLP and 2 isozyme loci into 20 linkage groups; the remaining 17 RFLP and 4 isozyme loci were unlinked. The mapped RFLP probes provide a new set of codominant markers for genetic analyses in loblolly pine.  相似文献   

7.
Summary DNA restriction endonuclease fragment analysis is used to examine the genetic organization, inheritance and linkage associations of the ribosomal DNA in pea. The substantial variation observed in the length of the intergenic spacer region is shown to segregate in Mendelian fashion involving two independent genetic loci, designated Rrn1 and Rrn2. Linkage between Rrn1 and two marker loci on chromosome 4 establishes the approximate location of this tandem array. Rrn2 shows linkage with a set of isozyme loci which assort independently of other markers on all seven chromosomes. Combining these observations with previous cytological data, we suggest that Rrn2 and the isozyme loci linked to it constitute a new linkage group on chromosome 7. The general absence of spacer length classes common to both rRNA loci in any of the lines we examined indicates that little or no genetic exchange occurs between the nonhomologous nucleolar organizer regions.  相似文献   

8.
 Weedy rice (Oryza sativa L.) is an important resource for breeding and for studying the evolution of rice. The present study was carried out to identify the genetic basis of the weedy rices distributed in various countries of the world. One hundred and fifty two strains of weedy rice collected from Bangladesh, Brazil, Bhutan, China, India, Japan, Korea, Nepal, Thailand and the USA were tested for variations in six morpho-physiological characteristics and in 14 isozyme loci. Twenty six weedy strains selected from the above materials were assayed for the Est-10 locus, six RAPD loci of the nuclear genome, and one chloroplast locus. From the results of multivariate analysis based on the morpho-physiological characteristics and the isozymes, weedy rice strains were classified into indica and japonica types, and each type was further divided into forms resembling cultivated and wild rice. Thus, four groups designated as I, II, III and IV were identified. Weedy strains of group I (indica-type similar to cultivars) were distributed mostly in temperate countries, group II (indica-type similar to wild rice) in tropical countries, group III (japonica-type similar to cultivars) in Bhutan and Korea, group IV ( japonica-type similar to wild rice) in China and Korea. In group I, classified as indica, several strains showed japonica-specific RAPD markers, while some others had japonica cytoplasm with indica-specific RAPD markers in a heterozygous state at several loci. One weedy strain belonging to group II showed a wild rice-specific allele at the Est-10 locus. However, in groups III and IV, no variation was ound either for the markers on Est-10 or for the RAPD loci tested. Judging from this study, weedy rice of group I might have originated at least partly from gene flow between indica and japonica, whereas that of group II most probably originated from gene flow between wild and cultivated indica rice. Weedy rice of group III is thought to have originated from old rice cultivars which had reverted to a weedy form, and that of group IV from gene flow between japonica cultivars and wild rice having japonica backgrounds. Received: 2 May 1996 / Accepted: 30 August 1996  相似文献   

9.
An electrophoretic survey of the natural populations ofAspergillus nidulans, theA. nidulans group, and various species belonging to the genusAspergillus from diverse geographical areas of India was carried out to determine the isozyme polymorphism of endoglucanase. The data revealed the presence of three forms of endoglucanase designated EG I, EG II, and EG III. In some isolates, EG I and EG II were present separately; in others, instead of two separate bands, one thick band was detected, which was designated EG I. In natural isolates ofA. nidulans and theA. nidulans group, EG III was detected in most, but not all, isolates, while EG I and EG II were always present. However, in various other species of the genusAspergillus, EG II was totally lacking. In all the populations at the EG I and EG II region, seven electrophoretic variants each were detected, and at the EG III region four variants were seen. The data suggest that there may be two structural genes for endoglucanase, one coding for proteins in the EG I/EG II zone and another for protein in the EG III zone.This research work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi.  相似文献   

10.
Three sets of isoenzymes of alcohol dehydrogenase were separated from root and shoot tissue of Hordeum vulgare by DEAE-cellulose chromatography. Set I showed only one band of ADH activity after polyacrylamide gel electrophoresis; Set II—two and Set III—three, making a total of six discernable bands. Only one set (I) was detected in the dry seed and one set (III) in the M9 (Adh-1-null) mutant available in tissue culture. The sets were found to have identical molecular weights (90 000), were all located in the cytoplasm but showed small differences in pH optima and substrate specificity. The affinity for ethanol (Km value, mM) varied between Set I (27.5), Set II (7.2) and Set III (3.5), whilst the affinity for NADH varied five-fold between the three sets. A dimeric quaternary structure was inferred from the random reassociation of enzyme subunits after dissociation in high ionic strength buffer.  相似文献   

11.
Summary Genetic analyses were conducted on peroxidase of the embryo and endosperm of seeds of one open pollinated and six inbred lines of cultivated rye (Secale cereale L.), and one line of Secale vavilovii Grossh. The analyses of the individual parts of the S. cereale seed yield a total of 14 peroxidase isozymes. Isozymes m, a, b, c, d, e, f and g (in order from faster to slower migration) were found in the embryo plus scutellum, while isozymes 1, 2, 3, 4, 5 and 6 (also from faster to slower migration) were peculiar of the endosperm. S. vavilovii has isozymes m, c1, d, e, f and g in its embryo plus scutellum, and isozyme 2 in the endosperm. Segregation data indicated that at least 13 different loci would be controlling the peroxidase of S. cereale. Isozymes a and b are controlled by alleles of the same locus, all the other loci have one active and dominant allele coding for one isozyme, and other null and recessive allele. The estimation of linkage relationships shows that five endosperm loci are linked, and tentative maps are shown. A possible dosage effect and the existence of controlling gene(s) for endosperm isozyme 4 is reported. All these data and the high frequency of null alleles found are discussed in relation to recent reports.  相似文献   

12.
Segregating families of beet (Beta vulgaris) were used to verify the monofactorial inheritance of two enzyme-coding loci, leucine aminopeptidase (Lap1) and glutamate oxaloacetate transaminase (Got3). With a series of primary trisomies and using three methods to discriminate between the critical trisomic (the locus is situated on the triplicated chromosome) and the non-critical ones, it was possible to allocate the two loci to beet chromosomes I and II, respectively. For the locus Lap1 distorted segregation ratios were estimated, and the incorporation of three alleles into one plant was attempted. In the case of Got3 the measurement of the allele dosage effect after electrophoresis was chosen as the major strategy. The output of laser densitometric scans were subjected to the non-parametrical Wilcoxon-Mann-Whitney test.  相似文献   

13.
Summary Four soybean seed urease nulls (lacking both the activity and antigen of the embryo-specific urease) were intermated and the F1 and F2 seed examined for urease activity. Both generations were without urease activity, and the nulls were therefore considered noncomplementing. In crosses of each null line to cultivars homozygous for the allelic, codominantly inherited urease slow or fast isozyme, the F1 seed expressed the embryo-specific urease isozyme of the urease-expressing parent. A 3 1 segregation for presence and absence of urease was observed in progeny from F1 and heterozygous F2 plants. The F2 and F3 from fastXnull combinations revealed that urease-positive seed were all phenotypically urease fast, while the same seed from slowXnull combinations showed a segregation of one seed containing a fast urease, either exclusively or in a heterozygous state with the slow isozyme, for every 69 phenotypic slows. Data pooled from F2 plants which segregate for both the presence (Sun) and absence (Sun) of urease and for the fast (Eu1-b) or slow (Eu1-a) urease allele indicate that the null lesion (Sun) is linked to Eu1 by approximately one map unit. The evidence is consistent with two models: (1) sun is an allele at the embryo-specific urease isozyme locus (Eu1) and that a high degree of exchange (and/or conversion) within the locus results in a 1% recombination frequency between the null trait and urease allozyme; (2) sun is at a distinct locus which is separated by one map unit from the embryo-specific urease isozyme locus (Eu1) upon which it acts in the cis position. Polyadenylated embryo RNA from one of the null lines, PI 229324, exhibited no urease template activity in vitro. Thus, the lack of urease antigen is due to lack of accumulation of translatable urease mRNA. The availability of soybeans lacking seed urease should be extremely useful to breeders as a trait for linkage studies and to geneticists as a transformation marker.Portions of this work were funded by the Illinois and Missouri Agricultural Experiment Stations, the SOHIO-University of Illinois Center of Excellence in Crop Molecular Genetics and Genetic Engineering and by grants PCM-8219652 from the National Science Foundation and USDA/SEA-CRCR-1-1374 from the USDA Competitive Grants Office  相似文献   

14.
Summary This study was conducted to assess the genetic basis of the variability observed for the glutamate oxaloacetate transaminase (GOT), Superoxide dismutase (SOD), esterase (EST), and malate dehydrogenase (MDH) isozyme systems in different open-pollinated Vicia faba varieties. Individual plants showing contrasting zymogram patterns were simultaneously selfed and cross-combined. Crossing was unsuccessful in producing progeny, and only selfed progenies were suitable for genetical analysis of isozyme variability. Three zones of GOT activity were made visible. The isozyme of GOT-2 and GOT-3 zones were dimeric and under the control of three alleles at the Got-2 locus and two alleles at the Got-3 locus, respectively. The isozymes of the GOT-1 zone did not show any variability. Three zones of SOD isozyme activity were made visible. The isozymes occurring in the SOD-1 (chloroplastic isozyme form) and SOD-2 (cytosol isozyme form) zones were dimeric and under the control of two alleles at the Sod-1 and Sod-2 loci. The isozyme visualized in the SOD-3 zone (mitochondrial isozyme form) were tetrameric and under the control of two alleles at the Sod-3 locus. Apparently the isozymes made visible in the most anodal esterase zones EST-1, EST-2, and EST-3 were monomeric, and the occurrence of two alleles at each of two different loci explained the variability observed in the EST-2 and EST-3 zones. For MDH, only two five-banded zymogram pattern types were found, and every selfed progeny showed only one of the two zymogram type, indicating that each individual possessed fixed alleles at the loci controlling MDH isozyme. Got-2, Got-3, Sod-1, Sod-2, and Sod-3 appear to be five new isozyme gene markers that can be useful in Vicia faba breeding for linkage study, varietal fingerprinting, outcrossing rate estimate, and indirect selection for quantitative characters.  相似文献   

15.
Summary The nucleolus organizer region located on the short arm of chromosome 1R of rye consists of a large cluster of genes that code for ribosomal RNA (designated the Nor-R1 locus). The genes in the cluster are separated by spacer regions which can vary in length in different rye lines. Differences in the spacer regions were scored in two families of F2 progeny. Segregation also occurred, in one or both of the families, at two seed protein loci and at two isozyme loci also located on chromosome 1R. The seed protein loci were identified as the Sec 1 locus controlling -secalins located on the short arm of chromosome 1R and the Sec 3 locus controlling high-molecular-weight secalins located on the long arm of 1R. The two isozyme loci were the Gpi-R1 locus controlling glucose-phosphate isomerase isozymes and the Pgd 2 locus controlling phosphogluconate dehydrogenase isozymes. The data indicated linkage between all five loci and map distances were calculated. The results indicate a gene order: Pgd 2 ... Sec 3 ... [centromere] ... Nor-R1 ... Gpi-R1 ... Sec 1. Evidence was obtained that rye possesses a minor 5S RNA locus (chromosome location unknown) in addition to the major 5S RNA locus previously shown to be located on the short arm of chromosome 1R.  相似文献   

16.
A. Athanasiou  J. S. Shore 《Genetics》1997,146(2):669-679
We used nondenaturing isoelectric focusing (IEF) in a survey of plants from 11 populations to identify style and pollen proteins unique to the short-styled morph of Turnera scabra, T. subulata and T. krapovickasii. Three protein bands [approximately isoelectric points (pIs) 6.1, 6.3 and 6.5] were found only in styles and stigmas of short-styled plants while two bands (approximately pIs 6.7 and 6.8, M(r) 56 and 59 kD) occur only in pollen of short-styled plants. Some of these bands appear very late in development, within 24 hr before flowering. Two isozyme loci were mapped to an 8.7 cM region spanning the distyly locus. Using these isozyme markers we identified progeny exhibiting recombination adjacent to the distyly locus. No recombinants between the distyly locus and the locus or loci controlling the presence of the short-styled morph-specific proteins were obtained. This suggests that the loci encoding these proteins are either extremely tightly linked to the distyly locus and in complete disequilibrium with the S allele or exhibit morph-limited expression. Crosses to a plant showing an unusual style protein phenotype demonstrated that an additional unlinked locus is required for full expression of the style proteins. The function of the morph-specific proteins is unknown.  相似文献   

17.
Using the near-isogenic lines, the possible location of glucose phosphate isomeras-2 (phosphoglucose isomerase-2) locus (Pgi-2) in relation to photoperiod sensitivity locus (Se-1) and blast resistance locus (Pi-z) was investigated. The recombination frequency data indicate thatPgi-2 locus locates betweenSe-1 andPi-z loci. Furthermore, 15 Indica cultivars possessed two types of glucose phosphate isomerase-2 (GPI-2) isozyme, whereas only one type of GPI-2 isozyme was found in 30 Japonica cultivars.  相似文献   

18.
It has been claimed that class I MHC loci are homogenized within species by frequent events of interlocus genetic exchange (concerted evolution). Evidence for this process includes the fact that certain rat class I loci (including RT1.A) located centromeric to class II and class III are more similar to each other than to the mouse K locus (also centromeric to class II/class III). However, a phylogenetic analysis showed that the rat RT1.A locus is in fact orthologous to the mouse K1 pseudogene (also centromeric to class II/class III). Thus, two independent events of translocation of genes centromeric to class II/class III have occurred in the history of the murine rodents, at least one of which (involving the ancestor of RT1.A and K1) occurred prior to the divergence of rat and mouse. It was also found that the rat nonclassical class I gene RT.BM1 is orthologous to the mouse nonclassical gene 37 d. These results argue that intelocus genetic exchange does not occur at a rate sufficient to cause within-species homogenization of class I MHC loci.  相似文献   

19.
Summary The progeny of 149 plants regenerated from tissue culture of immature wheat (Triticum aestivum) embryos were screened for variation in their grain -amylase isozyme pattern. One regenerant was found which was heterozygous for a variant pattern characterized by the presence of at least five new isozyme bands, as well as an increased intensity in existing bands in two more positions. The F2 of a homozygous variant crossed back to the parent segregated in an approximate 31 ratio but resolution of the gels was not sufficient to distinguish whether this represents a dominant or co-dominant single mutant gene. No chromosome abnormalities were evident in mitosis or meiosis of the homozygous variant or in the F1 of the variant crossed back to the parent. No recombination has been seen between the variant bands and production of multiple bands from a single locus is consistent with the nature of the known -amylase loci. However, the variant bands were not evident in a survey of 111 diverse genotypes, nor were they present in developing grain of the parent cultivar. Therefore, this variant could represent a rare mutation leading to expression of a currently unexpressed locus.  相似文献   

20.
Analysis of isozyme variation was carried out for 27 natural populations ofCeratopteris thalictroides in Japan. Of fifteen enzyme loci examined, eight loci were genetically polymorphic. At six loci,Lap, Pgi-2, Pgm-3, Pgm-4, Idh-2, and Skd-2, a marked genetic differentiation was observed between populations to the south of Okinawa Island and those to the north of the island. Okinawa Island contained a mixture of both southern and northern variants. Thus, two genetically distinct types (the south type and the north type) ofC. thalictroides occur allopatrically in Japan. Nei's genetic identity (I) between the two was 0.64, which was within the range of the I values between congeneric pteridophyte species. Regional fixation of a null allele was detected for one duplicated PGI locus in the north type ofC. thalictroides. This finding supports the recent hypothesis of genetic diploidization of polyploids through gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号