首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although some recent morphological and molecular studies agree that Cetacea is closely related to Hippopotamidae, there is little consensus on the phylogeny within Cetartiodactyla. We addressed this problem by conducting two analyses: (1) a simultaneous cladistic analysis of intrinsic data (morphology and molecules) and (2) a stratocladistic analysis, which included morphological, molecular, and stratigraphic data. Unlike previous simultaneous analyses, we had the opportunity to include data from the recently described hindlimbs of protocetid and pakicetid cetaceans. Our intrinsic dataset includes 73 taxa scored for 8,229 informative characters, of which 208 are morphological and 8,021 molecular. Both analyses supported the exclusion of Mesonychia from Cetartiodactyla and a close phylogenetic relationship between Hippopotamidae and Cetacea. Many polytomies in the strict consensus of the most parsimonious trees for the intrinsic dataset can be attributed to differing positions for Raoellidae, which in some trees is the sister-group to Cetacea. Pruning Raoellidae and 18 other taxa from all most parsimonious produced a fully resolved agreement subtree, which indicates that the Old World taxa Cebochoerus and Mixtotherium are successive stem taxa to Whippomorpha (i.e., Cetacea + Hippopotamidae). The main result of adding stratigraphic information to the intrinsic dataset was that we found fewer most parsimonious trees, which in most respects were congruent with a subset of the shortest trees for the intrinsic dataset. Our stratocladistic analysis supports species of Diacodexis as the most basal cetartiodactyls, a clade of suiform cetartiodactyls, a monophyletic Tylopoda that includes Protoceratidae, and a monophyletic Carnivora. We were unable to identify any pre-Miocene stem taxa to Hippopotamidae, thus its ghost lineage is still 39 million years long. The relatively low Bremer support for many nodes in our trees indicates that our phylogenetic hypotheses should be subjected to further testing.  相似文献   

2.
The stratigraphic record of first appearances provides an independent source of data for evaluating and comparing phylogenetic hypotheses that include taxa with fossil histories. However, no standardized method exists for calculating these metrics for polytomous phylogenies, restricting their applicability. Previously proposed methods insufficiently deal with this problem because they skew or restrict the resulting scores. To resolve this issue, we propose a standardized method for treating polytomies when calculating these metrics: the Comprehensive Polytomy approach (ComPoly). This approach accurately describes how phylogenetic uncertainty, indicated by polytomies, affects stratigraphic consistency scores. We also present a new program suite (Assistance with Stratigraphic Consistency Calculations) that incorporates the ComPoly approach and simplifies the calculation of absolute temporal stratigraphic consistency metrics. This study also demonstrates that stratigraphic consistency scores calculated from strict consensus trees can be overly inclusive and those calculated from less‐than‐strict consensus trees inaccurately describe the phylogenetic signal present in the source most‐parsimonious trees (MPTs). Therefore, stratigraphic consistency scores should be calculated directly from the source MPTs whenever possible to ensure their accuracy. Finally, we offer recommendations for standardizing comparisons between molecular divergence dates and the stratigraphic record of first appearances, a promising new application of these methods. © The Willi Hennig Society 2010.  相似文献   

3.
Entomopathogenic nematodes of the genus Steinernema are lethal parasites of insects that are used as biological control agents of several lepidopteran, dipteran and coleopteran pests. Phylogenetic relationships among 25 Steinernema species were estimated using nucleotide sequences from three genes and 22 morphological characters. Parsimony analysis of 28S (LSU) sequences yielded a well-resolved phylogenetic hypothesis with reliable bootstrap support for 13 clades. Parsimony analysis of mitochondrial DNA sequences (12S rDNA and cox 1 genes) yielded phylogenetic trees with a lower consistency index than for LSU sequences, and with fewer reliably supported clades. Combined phylogenetic analysis of the 3-gene dataset by parsimony and Bayesian methods yielded well-resolved and highly similar trees. Bayesian posterior probabilities were high for most clades; bootstrap (parsimony) support was reliable for approximately half of the internal nodes. Parsimony analysis of the morphological dataset yielded a poorly resolved tree, whereas total evidence analysis (molecular plus morphological data) yielded a phylogenetic hypothesis consistent with, but less resolved than trees inferred from combined molecular data. Parsimony mapping of morphological characters on the 3-gene trees showed that most structural features of steinernematids are highly homoplastic. The distribution of nematode foraging strategies on these trees predicts that S. hermaphroditum, S. diaprepesi and S. longicaudum (US isolate) have cruise forager behaviours.  相似文献   

4.
Paleontological fit of different kinds of cladograms is considered using the ghost range method, the ghost range being the time gap between dates of supposed and paleontologically confirmed appearance of a taxon. The absolute and relative length of total ghost ranges in the published morphological and molecular cladograms and, in some cases, traditional (‘intuitive’) cladograms were calculated. Orders of winged insects as well as families of some of these orders were the terminal taxa of the cladograms (in all, 42 cladograms for 14 sets of terminal taxa). A new index is proposed to assess the relative amount of ghost ranges: GRI = 1-L0/LM, where L0 is the sum of ghost ranges in a particular cladogram and LM is the maximum possible sum of ghost ranges in a cladogram with the same set of terminal taxa. As in the previous studies (Rasnitsyn, 2000, 2005), calculations showed the intuitive cladograms to be clearly superior to both molecular and morphological ones in their stratigraphic fit. Another result, namely that molecular cladograms showed no advantage over morphological cladistics, was unexpected and apparently unexplainable. Additionally, the hypothesis of character devaluation resulting from computerized cladistic procedures (Rasnitsyn, 2002) was directly supported for the first time by our calculations.  相似文献   

5.
All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar‐feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species‐rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar‐feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well‐studied organisms such as phyllostomid bats.  相似文献   

6.
A phylogeny of Iberian Aphodiini dung beetles was reconstructed based on morphological and molecular data. The data set included a total of 84 variable characters from wing venation, mouthparts, genitalia, and external morphology, as well as mitochondrial partial cytochrome c oxidase I (COI), complete tRNA-Leu (UUR), and partial cytochrome c oxidase II (COII) gene nucleotide sequences (1210 positions). Phylogenetic trees based on molecular data were relatively more resolved than those based on morphological characters. The Bayesian analysis of combined molecular and morphological data provided resolution not achieved by each data set separately. Ammoecius and Aphodius are the first lineages that branch off from the tree, followed by Acrossus, Nimbus, and Heptaulacus. The remaining studied taxa are recovered in a more derived clade that lacks internal resolution. Reconstructed trees based on molecular data showed relatively short internal nodes that were weakly supported. Such pattern may reflect a rapid radiation at the origin of the tribe Aphodiini, but also saturation of mutational changes. Several tests were conducted to discern between both competing hypotheses, as well as to assess the effect of incomplete taxon sampling.  相似文献   

7.
Entomopathogenic nematodes of the genus Steinernema are lethal parasites of insects that are used as biological control agents of several lepidopteran, dipteran and coleopteran pests. Phylogenetic relationships among 25 Steinernema species were estimated using nucleotide sequences from three genes and 22 morphological characters. Parsimony analysis of 28S (LSU) sequences yielded a well-resolved phylogenetic hypothesis with reliable bootstrap support for 13 clades. Parsimony analysis of mitochondrial DNA sequences (12S rDNA and cox 1 genes) yielded phylogenetic trees with a lower consistency index than for LSU sequences, and with fewer reliably supported clades. Combined phylogenetic analysis of the 3-gene dataset by parsimony and Bayesian methods yielded well-resolved and highly similar trees. Bayesian posterior probabilities were high for most clades; bootstrap (parsimony) support was reliable for approximately half of the internal nodes. Parsimony analysis of the morphological dataset yielded a poorly resolved tree, whereas total evidence analysis (molecular plus morphological data) yielded a phylogenetic hypothesis consistent with, but less resolved than trees inferred from combined molecular data. Parsimony mapping of morphological characters on the 3-gene trees showed that most structural features of steinernematids are highly homoplastic. The distribution of nematode foraging strategies on these trees predicts that S. hermaphroditum, S. diaprepesi and S. longicaudum (US isolate) have cruise forager behaviours.  相似文献   

8.
The intrasubfamilial classification of Microdontinae Rondani (Diptera: Syrphidae) has been a challenge: until recently more than 300 out of more than 400 valid species names were classified in Microdon Meigen. We present phylogenetic analyses of molecular and morphological characters (both separate and combined) of Microdontinae. The morphological dataset contains 174 characters, scored for 189 taxa (9 outgroup), representing all 43 presently recognized genera and several subgenera and species groups. The molecular dataset, representing 90 ingroup species of 28 genera, comprises sequences of five partitions in total from the mitochondrial gene COI and the nuclear ribosomal genes 18S and 28S. We test the sister‐group relationship of Spheginobaccha with the other Microdontinae, attempt to elucidate phylogenetic relationships within the Microdontinae and discuss uncertainties in the classification of Microdontinae. Trees based on molecular characters alone are poorly resolved, but combined data are better resolved. Support for many deeper nodes is low, and placement of such nodes differs between parsimony and Bayesian analyses. However, Spheginobaccha is recovered as highly supported sister group in both. Both analyses agree on the early branching of Mixogaster, Schizoceratomyia, Afromicrodon and Paramicrodon. The taxonomical rank in relation to the other Syrphidae is discussed briefly. An additional analysis based on morphological characters only, including all 189 taxa, used implied weighting. A range of weighting strengths (k‐values) is applied, chosen such that values of character fit of the resulting trees are divided into regular intervals. Results of this analysis are used for discussing the phylogenetic relationships of genera unrepresented in the molecular dataset.  相似文献   

9.
Fossil carpoids possess a unique anatomy that is difficult to interpret; as a result, there are a number of competing phylogenetic hypotheses for carpoid taxa. Stratigraphic congruence indices provide a quantitative means of evaluating alternative cladograms where character coding is contentious; trees that show a statistically significant fit between stratigraphy and phylogeny are better supported by the fossil record. We here test the agreement between stratigraphic and cladistic data for 27 carpoid cladograms (24 have previously been published, three are novel). The results demonstrate that in analyses of subsets of carpoid taxa, the stratigraphic congruence of trees is not strongly affected by the interpretative model followed. However, when studying the relationships of carpoids with other deuterostomes, assuming that carpoids should be interpreted by reference to chordates/hemichordates (rather than echinoderms) leads to a poorer fit with the known stratigraphic ranges of taxa. Thus, the disputed calcichordate hypothesis (carpoids interpreted as stem and crown-group chordates and stem-group hemichordates) is much less congruent with stratigraphy than alternative models interpreting carpoids as stem or crown-group echinoderms.  相似文献   

10.
When molecules and morphology produce incongruent hypotheses of primate interrelationships, the data are typically viewed as incompatible, and molecular hypotheses are often considered to be better indicators of phylogenetic history. However, it has been demonstrated that the choice of which taxa to include in cladistic analysis as well as assumptions about character weighting, character state transformation order, and outgroup choice all influence hypotheses of relationships and may positively influence tree topology, so that relationships between extant taxa are consistent with those found using molecular data. Thus, the source of incongruence between morphological and molecular trees may lie not in the morphological data themselves but in assumptions surrounding the ways characters evolve and their impact on cladistic analysis. In this study, we investigate the role that assumptions about character polarity and transformation order play in creating incongruence between primate phylogenies based on morphological data and those supported by multiple lines of molecular data. By releasing constraints imposed on published morphological analyses of primates from disparate clades and subjecting those data to parsimony analysis, we test the hypothesis that incongruence between morphology and molecules results from inherent flaws in morphological data. To quantify the difference between incongruent trees, we introduce a new method called branch slide distance (BSD). BSD mitigates many of the limitations attributed to other tree comparison methods, thus allowing for a more accurate measure of topological similarity. We find that releasing a priori constraints on character behavior often produces trees that are consistent with molecular trees. Case studies are presented that illustrate how congruence between molecules and unconstrained morphological data may provide insight into issues of polarity, transformation order, homology, and homoplasy.  相似文献   

11.
Gravity models have a long history of use in describing and forecasting the movements of people as well as goods and services, making them a natural basis for disease transmission rates over distance. In agent-based micro-simulations, gravity models can be directly used to represent movement of individuals and hence disease. In this paper, we consider a range of gravity models as fits to movement data from the UK and the US. We examine the ability of synthetic networks generated from fitted models to match those from the data in terms of epidemic behaviour; in particular, times to first infection. For both datasets, best fits are obtained with a two-piece ‘matched’ power law distance distribution. Epidemics on synthetic UK networks match well those on data networks across all but the smallest nodes for a range of aggregation levels. We derive an expression for time to infection between nodes in terms of epidemiological and network parameters which illuminates the influence of network clustering in spread across networks and suggests an approximate relationship between the log-likelihood deviance of model fit and the match times to infection between synthetic and data networks. On synthetic US networks, the match in epidemic behaviour is initially poor and sensitive to the initially infected node. Analysis of times to infection indicates a failure of models to capture infrequent long-range contact between large nodes. An assortative model based on node population size captures this heterogeneity, considerably improving the epidemiological match between synthetic and data networks.  相似文献   

12.
The molecular clock provides the only viable means of establishing realistic evolutionary timescales but it remains unclear how best to calibrate divergence time analyses. Calibrations can be applied to the tips and/or to the nodes of a phylogeny. Tip-calibration is an attractive approach since it allows fossil species to be included alongside extant relatives in molecular clock analyses. However, most fossil species are known from multiple stratigraphical horizons and it remains unclear how such age ranges should be interpreted to codify tip-calibrations. We use simulations and empirical data to explore the impact on precision and accuracy of different approaches to informing tip-calibrations. In particular, we focus on the effect of using tip-calibrations defined using the oldest vs youngest stratigraphic occurrences, the full stratigraphical range, as well as confidence intervals on these data points. The results of our simulations show that using different calibration approaches leads to different divergence-time estimates and demonstrate that concentrating tip-calibrations near the root of the dated phylogeny improves both precision and accuracy of estimated divergence times. Finally, our results indicate that the highest levels of accuracy and precision are achieved when fossil tips are calibrated based on the fossil occurrence from which the morphological data were derived. These trends were corroborated by analysis of an empirical dataset for Ursidae. Overall, we conclude that tip-dating analyses should, in particular, employ tip calibrations close to the root of the tree and they should be calibrated based on the age of the fossil used to inform the morphological data used in Total Evidence Dating.  相似文献   

13.
An adequate stratigraphic record can not only aid in both cladistic and stratophenetic reconstruction of phytogenies, but can also serve in estimating the temporal consistency of the resulting phylogenetic trees. For hypothetical data sets, cladistically constructed trees can be as consistent with the temporal distribution of sampled populations or species as those constructed stratophenetically. Empirical testing in taxonomic groups with sufficiently dense fossil records is needed to show whether, and under what conditions, this potential can be realized. A stratophenetic tree and cladistic trees based on several approaches to character weighting were constructed for Caribbean Neogene species of the bryozoan Metrarabdotos with multiple‐character data from closely spaced sequential populations. The modular morphology and highly punctuated evolutionary pattern of these species blur the distinction between continuous and discrete characters, so that all available characters are potentially of equal significance in establishing phytogenies, rather than just those with discrete states conventionally used in cladistic analysis. However, only the cladistic trees generated with all characters weighted to emphasize contribution to species discrimination have temporal consistencies that are clearly significant statistically and approach that of the stratophenetic tree in magnitude. These results provide a start toward establishing general guidelines for cladistic analysis of taxa with stratigraphie records too sparse for stratophenetic reconstruction.  相似文献   

14.
The bootstrapping method of determining confidence in the topology of phylogenetic trees has been applied to electrophoretic protein data for two groups of amphibians: salamanders of two North American genera (Aneides and Plethodon) of the tribe Plethodontini and Holarctic hylid frogs. Some current methods of phylogenetic reconstruction for electrophoretic protein data have been evaluated by comparing the trees obtained from molecular data sets with available morphological data. Molecular data on the phylogenetic relationships of Aneides and Plethodon, data obtained from electrophoretic and immunological studies, indicate that Aneides probably was derived from western Plethodon subsequent to the separation of eastern and western Plethodon. Thus Plethodon very likely is a paraphyletic genus. The extremely low rate of morphological evolution in Plethodon compared with that in Aneides causes difficulty in indicating their evolutionary relationships taxonomically because there are no synapomorphic morphological characters that define either eastern or western Plethodon, whereas there are several for the genus Aneides. Thus molecular data alone probably indicate the evolutionary relationships of the species in these genera. Highton and Larson's (1979) arrangement of species of Plethodon into eight species groups is supported. The topologies of the unweighted pair-group method using arithmetic means (UPGMA) and distance Wagner trees were compared with independent morphological and molecular data on the relationships of the 28 plethodonine species. It was found that UPGMA trees indicate relationships that are more in agreement with other information than are those provided by distance Wagner trees. The use of the bootstrap technique indicates that the topologies of UPGMA trees are better supported statistically than are the topologies of distance Wagner trees. Moreover, different addition criteria produce a variety of distance Wagner trees with different topologies, each with several groupings that are not supported statistically. It is concluded that considerable caution should be used in interpreting the topology of distance Wagner trees. Very similar results were obtained with a second data set on 30 taxa of Holarctic hylid frogs. Trees obtained by the neighbor-joining method are more in agreement with UPGMA phenograms and other data, so this method of phylogenetic reconstruction may be useful to systematists not willing to assume constant rates of evolution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The comparatively good fossil record of post-Palaeozoic echinoids allows rates of morphological change to be estimated over the past 260 million years and compared with rates of molecular evolution. Parsimony analysis of morphological data, based predominantly on skeletal characteristics, and parsimony, distance and maximum likelihood analyses of molecular data, from the first 380 bases from the 5' end of the 28S rRNA molecule, for 10 species of echinoid produce congruent phylogenies. The molecular sequence chosen is demonstrably far from saturation and sister groups have divergence times ranging from about 15 to 260 Ma. Parsimony analysis allows the great majority of molecular and morphological apomorphies to be placed in one of 18 independent geological time intervals, providing a direct measure of rates of evolution for periods in the geological past. Because most molecular fixed point mutations in our sequences cannot be polarized unambiguously by outgroup comparison (making the outgroup states effectively random), distance and parsimony analyses both tend spuriously to root the echinoid tree on the longest internal branch. A topology identical to that derived from morphological data is, however, obtained using Maximum Likelihood and also parsimony analysis where outgroup rooting is restricted to more conserved regions. This is taken as the correct topology for assessing rates of evolution. Overall, both morphological and molecular changes show a moderately strong correlation with time elapsed, but a weaker correlation with one another. Statistically significant differences in evolutionary rate are found between some, but not all, pair-wise comparisons of sister lineages for both molecular and morphological data. The molecular clock rate for echinaceans is three times faster than that for cidaroids and irregular echinoids. Spearman's rank correlation test, which requires only relative magnitude of changes to be known, suggests that morphological change has a slightly better correlation with time than does molecular change, averaged over all ten species. However, when just echinaceans are considered an extremely good correlation is found between the number of molecular changes and time elapsed, whereas morphological change remains poorly correlated. Thus, molecular rates approximate to a clocklike model within restricted echinoid clades, but vary significantly between clades. Averaging results over all echinoids produces a correlation that is no better than the correlation between morphological change and time elapsed.  相似文献   

16.
Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence.  相似文献   

17.
Species complexes undergoing rapid radiation present a challenge in molecular systematics because of the possibility that ancestral polymorphism is retained in component gene trees. Coalescent theory has demonstrated that gene trees often fail to match lineage trees when taxon divergence times are less than the ancestral effective population sizes. Suggestions to increase the number of loci and the number of individuals per taxon have been proposed; however, phylogenetic methods to adequately analyze these data in a coalescent framework are scarce. We compare two approaches to estimating lineage (species) trees using multiple individuals and multiple loci: the commonly used partitioned Bayesian analysis of concatenated sequences and a modification of a newly developed hierarchical Bayesian method (BEST) that simultaneously estimates gene trees and species trees from multilocus data. We test these approaches on a phylogeny of rapidly radiating species wherein divergence times are likely to be smaller than effective population sizes, and incomplete lineage sorting is known, in the rodent genus, Thomomys. We use seven independent noncoding nuclear sequence loci (total approximately 4300 bp) and between 1 and 12 individuals per taxon to construct a phylogenetic hypothesis for eight Thomomys species. The majority-rule consensus tree from the partitioned concatenated analysis included 14 strongly supported bipartitions, corroborating monophyletic species status of five of the eight named species. The BEST tree strongly supported only the split between the two subgenera and showed very low support for any other clade. Comparison of both lineage trees to individual gene trees revealed that the concatenation method appears to ignore conflicting signals among gene trees, whereas the BEST tree considers conflicting signals and downweights support for those nodes. Bayes factor analysis of posterior tree distributions from both analyses strongly favor the model underlying the BEST analysis. This comparison underscores the risks of overreliance on results from concatenation, and ignoring the properties of coalescence, especially in cases of recent, rapid radiations.  相似文献   

18.
The estimation of a robust phylogeny is a necessary first step in understanding the biological diversification of the platyrrhines. Although the most recent phylogenies are generally robust, they differ from one another in the relationship between Aotus and other genera as well as in the relationship between Pitheciidae and other families. Here, we used coding and non-coding sequences to infer the species tree and embedded gene trees of the platyrrhine genera using the Bayesian Markov chain Monte Carlo method for the multispecies coalescent (?BEAST) for the first time and to compared the results with those of a Bayesian concatenated phylogenetic analysis. Our species tree, based on all available sequences, shows a closer phylogenetic relationship between Atelidae and Cebidae and a closer relationship between Aotus and the Cebidae clade. The posterior probabilities are lower for these conflictive tree nodes compared to those in the concatenated analysis; this finding could be explained by some gene trees showing no concordant topologies between Aotus and the other genera. Moreover, the topology of our species tree also differs from the findings of previous molecular and morphological studies regarding the position of Aotus. The existence of discrepancies between morphological data, gene trees and the species tree is widely reported and can be related to processes such as incomplete lineage sorting or selection. Although these processes are common in species trees with low divergence, they can also occur in species trees with deep and rapid divergence. The sources of the inconsistency of morphological and molecular traits with the species tree could be a main focus of further research on platyrrhines.  相似文献   

19.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values given an assumed prior probability distribution for each parameter. Little is known about the effects of integrating over branch length uncertainty on posterior probabilities when different priors are assumed. Here, we show that integrating over uncertainty using a wide range of typical prior assumptions strongly affects posterior probabilities, causing them to deviate from those that would be inferred if branch lengths were known in advance; only when there is no uncertainty to integrate over does the average posterior probability of a group of trees accurately predict the proportion of correct trees in the group. The pattern of branch lengths on the true tree determines whether integrating over uncertainty pushes posterior probabilities upward or downward. The magnitude of the effect depends on the specific prior distributions used and the length of the sequences analyzed. Under realistic conditions, however, even extraordinarily long sequences are not enough to prevent frequent inference of incorrect clades with strong support. We found that across a range of conditions, diffuse priors--either flat or exponential distributions with moderate to large means--provide more reliable inferences than small-mean exponential priors. An empirical Bayes approach that fixes branch lengths at their maximum likelihood estimates yields posterior probabilities that more closely match those that would be inferred if the true branch lengths were known in advance and reduces the rate of strongly supported false inferences compared with fully Bayesian integration.  相似文献   

20.
Comments on the Manhattan Stratigraphic Measure   总被引:1,自引:0,他引:1  
The Manhattan stratigraphic measure was proposed as a measure of congruence between temporal information retrieved from the fossil record and a phylogenetic hypothesis. This index is based on the fit of a Sankoff character representing the stratigraphic ages of terminal taxa and is calculated in a way analogous to the consistency index. Sample cases are analyzed in which this measure is insensitive to increasing amounts of conflict between stratigraphic and topological temporal information. A simple modification of the step matrix upon which the measure is based is proposed. The modified index, MSM*, overcomes the observed problem and is based on the measurement of the number and extent of ghost lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号