首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein Ser/Thr phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that controls numerous cellular processes by the dephosphorylation of key regulatory proteins. PP1 is expressed in various cellular compartments but is most abundant in the nucleus. We have examined the determinants for the nuclear localization of enhanced green fluorescent protein-tagged PP1 in COS1 cells. Our studies show that PP1gamma(1) does not contain a functional nuclear localization signal and that its nuclear accumulation does not require Sds22, which has previously been implicated in the nuclear accumulation of PP1 in yeast (Peggie, M. W., MacKelvie, S. H., Bloecher, A., Knatko, E. V., Tatchell, K., and Stark, M. J. R. (2002) J. Cell Sci. 115, 195-206). However, the nuclear targeting of PP1 isoforms was alleviated by the mutation of their binding sites for proteins that interact via an RVXF motif. Moreover, one of the mutants with a cytoplasmic accumulation and decreased affinity for RVXF motifs (PP1gamma(1)-F257A) could be re-targeted to the nucleus by the overexpression of nuclear interactors (NIPP1 (nuclear inhibitor of PP1) and PNUTS (PP1 nuclear targeting subunit)) with a functional RVXF motif. Also, the addition of a synthetic RVXF-containing peptide to permeabilized cells resulted in the loss of nuclear enhanced green fluorescent protein-PP1gamma(1). Finally, NIPP1(-/-) mouse embryos showed a nuclear hyperphosphorylation on threonine, consistent with a role for NIPP1 in the nuclear targeting and/or retention of PP1. Our data suggest that both the nuclear translocation and the nuclear retention of PP1 depend on its binding to interactors with an RVXF motif.  相似文献   

2.
3.
We have identified two proteins that bind with high specificity to type 1 serine/threonine protein phosphatase (PP1) and have exploited their inhibitory properties to develop an efficient and flexible strategy for conditional inactivation of PP1 in vivo. We show that modest overexpression of Drosophila homologs of I-2 and NIPP1 (I-2Dm and NIPP1Dm) reduces the level of PP1 activity and phenotypically resembles known PP1 mutants. These phenotypes, which include lethality, abnormal mitotic figures, and defects in muscle development, are suppressed by coexpression of PP1, indicating that the effect is due specifically to loss of PP1 activity. Reactivation of I-2Dm:PP1c complexes suggests that inhibition of PP1 activity in vivo does not result in a compensating increase in synthesis of active PP1. PP1 mutants enhance the wing overgrowth phenotype caused by ectopic expression of the type II TGF beta superfamily signaling receptor Punt. Using I-2Dm, which has a less severe effect than NIPP1Dm, we show that lowering the level of PP1 activity specifically in cells overexpressing Punt is sufficient for wing overgrowth and that the interaction between PP1 and Punt requires the type I receptor Thick-veins (Tkv) but is not strongly sensitive to the level of the ligand, Decapentaplegic (Dpp), nor to that of the other type I receptors. This is consistent with a role for PP1 in antagonizing Punt by preventing phosphorylation of Tkv. These studies demonstrate that inhibitors of PP1 can be used in a tissue- and developmental-specific manner to examine the developmental roles of PP1.  相似文献   

4.
5.
6.
Electrical gradients are present in many developing and regenerating tissues and around tumours. Mimicking endogenous electric fields in vitro has profound effects on the behaviour of many cell types. Intriguingly, specific cell types migrate cathodally, others anodally and some polarise with their long axis perpendicular to the electric vector. These striking phenomena are likely to have in vivo relevance since one of the determining factors during cancer metastasis is the ability to switch between attractive and repulsive migration in response to extracellular guidance stimuli. We present evidence that the cervical cancer cell line HeLa migrates cathodally in a direct current electric field of physiological intensity, while the strongly metastatic prostate cancer cell line PC-3-M migrates anodally. Notably, genetic disruption of protein serine/threonine phosphatase-1 (PP1) and its regulator NIPP1 decrease directional migration in these cell lines. Conversely, the inducible expression of NIPP1 switched the directional response of HeLa cells from cathodal to slightly anodal in a PP1-dependent manner. Remarkably, induction of a hyperactive PP1/NIPP1 holoenzyme, further shifted directional migration towards the anode. We show that PP1 association with NIPP1 upregulates signalling by the GTPase Cdc42 and demonstrate that pharmacological inhibition of Cdc42 in cells overexpressing NIPP1 recovered cathodal migration. Taken together, we provide the first evidence for regulation of directional cell migration by NIPP1. In addition, we identify PP1/NIPP1 as a novel molecular compass that controls directed cell migration via upregulation of Cdc42 signalling and suggest a way by which PP1/NIPP1 may contribute to the migratory properties of cancer cells.  相似文献   

7.
The histone methyltransferase EZH2 regulates cell proliferation and differentiation by silencing Polycomb group target genes. NIPP1, a nuclear regulator of serine/threonine protein phosphatase 1 (PP1), has been implicated in the regulation of EZH2 occupancy at target loci, but the underlying mechanism is not understood. Here, we demonstrate that the phosphorylation of EZH2 by cyclin-dependent kinases at Thr416 creates a docking site for the ForkHead-associated domain of NIPP1. Recruited NIPP1 enables the net phosphorylation of EZH2 by inhibiting its dephosphorylation by PP1. Accordingly, a NIPP1-binding mutant of EZH2 is hypophosphorylated, and the knockdown of NIPP1 results in a reduced phosphorylation of endogenous EZH2. Conversely, the loss of PP1 is associated with a hyperphosphorylation of EZH2. A genome-wide promoter-binding profiling in HeLa cells revealed that the NIPP1-binding mutant shows a deficient association with about a third of the Polycomb target genes, and these are enriched for functions in proliferation. Our data identify PP1 as an EZH2 phosphatase and demonstrate that the phosphorylation-regulated association of EZH2 with proliferation-related targets depends on associated NIPP1.  相似文献   

8.
Pre-mRNA splicing entails reversible phosphorylation of spliceosomal proteins. Recent work has revealed essential roles for Ser/Thr phosphatases, such as protein phosphatase-1 (PP1), in splicing, but how these phosphatases are regulated is largely unknown. We show that nuclear inhibitor of PP1 (NIPP1), a major PP1 interactor in the vertebrate nucleus, recruits PP1 to Sap155 (spliceosome-associated protein 155), an essential component of U2 small nuclear ribonucleoprotein particles, and promotes Sap155 dephosphorylation. C-terminally truncated NIPP1 (NIPP1-DeltaC) formed a hyper-active holoenzyme with PP1, rendering PP1 minimally phosphorylated on an inhibitory site. Forced expression of NIPP1-WT and -DeltaC resulted in slight and severe decreases in Sap155 hyperphosphorylation, respectively, and the latter was accompanied with inhibition of splicing. PP1 overexpression produced similar effects, whereas small interfering RNA-mediated NIPP1 knockdown enhanced Sap155 hyperphosphorylation upon okadaic acid treatment. NIPP1 did not inhibit but rather stimulated Sap155 dephosphorylation by PP1 in vitro through facilitating Sap155/PP1 interaction. Further analysis revealed that NIPP1 specifically recognizes hyperphosphorylated Sap155 thorough its Forkhead-associated domain and dissociates from Sap155 after dephosphorylation by associated PP1. Thus NIPP1 works as a molecular sensor for PP1 to recognize phosphorylated Sap155.  相似文献   

9.
10.
11.
In lower eukaryotic organisms, the loss of serine/threonine protein phosphatase type 1 (PP1) results in growth arrest after the onset of mitosis. In humans, four highly homologous isoforms of PP1 (PP1alpha, PP1delta, PP1gamma1, and PP1gamma2) have been identified. Determining the roles of these phosphatases, however, has proven difficult due to the lack of subtype-specific inhibitors. In this study, we developed chimeric antisense 2'-O-(2-methoxy)ethylphosphothioate oligonucleotides targeting human PP1gamma1 that specifically inhibit PP1gamma1 gene expression. Two potent antisense oligonucleotides (ISIS 14435 and 14439; IC(50) approximately 50 nM) were then employed to elucidate the cellular functions of PP1gamma1 during cell cycle progression. In A549 cells, the inhibition of PP1gamma1 expression resulted in a dose-dependent inhibition of cellular proliferation, with growth arrest occurring after approximately 36-48 h, when PP1gamma1 mRNA expression was inhibited by >85%. Fluorescence-activated cell sorter analysis revealed that ISIS 14435/14439-induced growth arrest was associated with an increase in the number of cells containing 4N DNA. Immunostaining of treated cells revealed that the inhibition of PP1gamma1 expression had no apparent effect on the formation of mitotic spindles. However, decreased expression was associated with the failure of cell division in a late stage of cytokinesis and the formation of dikaryons.  相似文献   

12.
Polycomb group (PcG) proteins are key regulators of stem-cell and cancer biology. They mainly act as repressors of differentiation and tumor-suppressor genes. One key silencing step involves the trimethylation of histone H3 on Lys27 (H3K27) by EZH2, a core component of the Polycomb Repressive Complex 2 (PRC2). The mechanism underlying the initial recruitment of mammalian PRC2 complexes is not well understood. Here, we show that NIPP1, a regulator of protein Ser/Thr phosphatase-1 (PP1), forms a complex with PP1 and PRC2 components on chromatin. The knockdown of NIPP1 or PP1 reduced the association of EZH2 with a subset of its target genes, whereas the overexpression of NIPP1 resulted in a retargeting of EZH2 from fully repressed to partially active PcG targets. However, the expression of a PP1-binding mutant of NIPP1 (NIPP1m) did not cause a redistribution of EZH2. Moreover, mapping of the chromatin binding sites with the DamID technique revealed that NIPP1 was associated with multiple PcG target genes, including the Homeobox A cluster, whereas NIPP1m showed a deficient binding at these loci. We propose that NIPP1 associates with a subset of PcG targets in a PP1-dependent manner and thereby contributes to the recruitment of the PRC2 complex.  相似文献   

13.
14.
15.
16.
Vascular endothelial growth factor (VEGF), an angiogenic factor induced by hypoxia, also exerts direct effects on neural tissues. VEGF up‐regulation after hypoxia coincides with expression of its two tyrosine kinase receptors Flt‐1(VEGFR‐1) and Flk‐1 (KDR/VEGFR‐2), which are the key mediators of physiological angiogenesis. We have recently shown that hypoxic‐preconditioning (PC) leading to tolerance to hypoxia–ischemia in neonatal piglet brain resulted in increased expression of VEGF. In this study, we used a hypoxic‐preconditioning model of ischemic tolerance to analyze the expression and cellular distribution of VEGF receptors and phosphorylation of cAMP‐response element‐binding protein (CREB) in newborn piglet brain. The response of Flt‐1 and Flk‐1 mRNA to PC alone was biphasic with peaks early (6 h) and late (1 week) after PC. The mRNA expression of Flt‐1 and Flk‐1 in piglets preconditioned 24 h prior to hypoxia–ischemia was significantly higher than non‐preconditioned piglets and remained up‐regulated up to 7 days. Furthermore, PC prior to hypoxia–ischemia significantly increased the protein levels of Flt‐1 and Flk‐1 compared with hypoxia–ischemia in a time‐dependent manner. Double‐immunolabeling indicated that both Flt‐1 and Flk‐1 are expressed in neurons and endothelial cells with a similar time course of expression following PC and that PC leads to the growth of new vessels. Finally, our data demonstrate that PC significantly phosphorylated and activated cAMP‐response element‐binding protein in nucleus. These results suggest that mechanism(s) initiated by PC can induce VEGF receptor up‐regulation in newborn brain and that VEGF–VEGF receptor‐coupled signal transduction pathways could contribute to the establishment of tolerance following hypoxia–ischemia.  相似文献   

17.
18.
AMP-activated protein kinase: the energy charge hypothesis revisited.   总被引:31,自引:0,他引:31  
The AMP-activated protein kinase cascade is a sensor of cellular energy charge, and its existence provides strong support for the energy charge hypothesis first proposed by Daniel Atkinson in the 1960s. The system is activated in an ultrasensitive manner by cellular stresses that deplete ATP (and consequently elevate AMP), either by inhibiting ATP production (e.g., hypoxia), or by accelerating ATP consumption (e.g., exercise in muscle). Once activated, it switches on catabolic pathways, both acutely by phosphorylation of metabolic enzymes and chronically by effects on gene expression, and switches off many ATP-consuming processes. Recent work suggests that activation of AMPK is responsible for many of the effects of physical exercise, both the rapid metabolic effects and the adaptations that occur during training. Dominant mutations in regulatory subunit isoforms (gamma2 and gamma3) of AMPK, which appear to increase the basal activity in the absence of AMP, lead to hypertrophy of cardiac and skeletal muscle respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号