首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inbred C57BL/6 mice were challenged with Borrelia afzelii, Borrelia garinii and Borrelia burgdorferi sensu stricto and tested for antigen-specific T-cell response in vitro. The sonicated preparations of in vitro grown spirochetes were capable of stimulating polyclonal proliferation and specific cell-mediated response, depending on duration of the cell culture. Murine splenocytes previously sensitized to B. burgdorferi sensu lato (s.l. ), but not those from control mice, could be induced for antigen-specific proliferation in vitro. Moreover, detectable cell-mediated response could be induced only with antigen preparations derived from a corresponding strain but not with those obtained from other Borrelia genospecies as revealed by the [(3)H]thymidine incorporation assay. The current study considers that the strict B. burgdorferi s.l. antigen-specific response may also be expected in infections in humans and contributes to the explanation of the frequently poor antibody- and cell-mediated immune response observed in patients diagnosed with Lyme disease.  相似文献   

2.
Lyme disease (LD) is the most common tick-borne disease in the Northern hemisphere. It is caused by Borrelia burgdorferi sensu lato, in particular, B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii. However, other genospecies have been implicated as causative factors of LD as well. Borrelia burgdorferi exhibits numerous immunogenic lipoproteins, but due to strong heterogeneity, the use of these proteins for serodiagnosis and vaccination is hampered. We and others have identified acylated cholesteryl galactosides (ACGal) as a novel glycolipid present in B. burgdorferi sensu stricto, B. afzelii, and B. garinii. ACGal is a strong antigen and the majority of patients display anti-ACGal antibodies in the chronic stages of LD. However, it is unknown whether ACGal is present in other presumably pathogenic B. burgdorferi genospecies. Therefore, we performed an analysis of the total lipid extracts of a wide spectrum of genospecies of B. burgdorferi sensu lato using thin-layer chromatography as well as Western blot and dot-blot assays. We show that ACGal is present in substantial quantities in all B. burgdorferi genospecies tested. Therefore, this molecule might improve the serological detection of rarely pathogenic genospecies, and may be used as a protective vaccine regardless of the prevailing genospecies.  相似文献   

3.
Little attention has been given in scientific literature to how introduced species may act as a new host for native infectious agents and modify the epidemiology of a disease. In this study, we investigated whether an introduced species, the Siberian chipmunk (Tamias sibiricus barberi), was a potentially new reservoir host for Borrelia burgdorferi sensu lato, the causative agent of Lyme disease. First, we ascertained whether chipmunks were infected by all of the B. burgdorferi sensu lato genospecies associated with rodents and available in their source of infection, questing nymphs. Second, we determined whether the prevalence and diversity of B. burgdorferi sensu lato in chipmunks were similar to those of a native reservoir rodent, the bank vole (Myodes glareolus). Our research took place between 2006 and 2008 in a suburban French forest, where we trapped 335 chipmunks and 671 voles and collected 743 nymphs of ticks that were questing for hosts by dragging on the vegetation. We assayed for B. burgdorferi sensu lato with ear biopsy specimens taken from the rodents and in nymphs using PCR and restriction fragment length polymorphism (RFLP). Chipmunks were infected by the three Borrelia genospecies that were present in questing nymphs and that infect rodents (B. burgdorferi sensu stricto, B. afzelii, and B. garinii). In contrast, voles hosted only B. afzelii. Furthermore, chipmunks were more infected (35%) than voles (16%). These results may be explained by the higher exposure of chipmunks, because they harbor more ticks, or by their higher tolerance of other B. burgdorferi sensu lato genospecies than of B. afzelii. If chipmunks are competent reservoir hosts for B. burgdorferi sensu lato, they may spill back B. burgdorferi sensu lato to native communities and eventually may increase the risk of Lyme disease transmission to humans.  相似文献   

4.
To evaluate the prevalence rate of tick-borne bacterial pathogens, unfed adult Ixodes ricinus ticks were collected from vegetation in 2001, 2003, and 2004 at 18 localities throughout Serbia. A total of 287 ticks were examined by PCR technique for the presence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Francisella tularensis. The highest prevalence rate was that for B. burgdorferi sensu lato (42.5%), followed by A. phagocytophilum (13.9%) and F. tularensis (3.8%). The presence of five B. burgdorferi sensu lato genospecies, namely, B. burgdorferi sensu stricto, B. afzelii, B. garinii, B. lusitaniae, and B. valaisiana was identified by restriction fragment length polymorphism (RFLP) analysis. The most frequent B. burgdorferi sensu lato genospecies was B. lusitaniae, followed by B. burgdorferi sensu stricto. Co-infection by B. burgdorferi sensu stricto and B. lusitaniae was frequently observed. Co-infection by B. burgdorferi sensu lato and A. phagocytophilum and co-infection by B. burgdorferi sensu lato and F. tularensis appeared in 24 ticks. Sequencing of p44/msp2 paralogs of Serbian A. phagocytophilum showed that they were unique and distinct from those of A. phagocytophilum in US and UK. This is the first report of B. garinii, B. lusitaniae, B. valaisiana, as well as A. phagocytophilum and F. tularensis infected ticks in Serbia. These findings indicate a public health threat in Serbia of tick-borne diseases caused by B. burgdorferi sensu lato, A. phagocytophilum and F. tularensis.  相似文献   

5.
Borrelia burgdorferi outer surface protein (Osp) A is preferentially expressed by spirochetes in the Ixodes scapularis gut and facilitates pathogen-vector adherence in vitro. Here we examined B. burgdorferi-tick interactions in vivo by using Abs directed against OspA from each of the three major B. burgdorferi sensu lato genospecies: B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii. Abs directed against B. burgdorferi sensu stricto (isolate N40) destroy the spirochete and can protect mice from infection. In contrast, antisera raised against OspA from B. afzelii (isolate ACA-1) and B. garinii (isolate ZQ-1) bind to B. burgdorferi N40 but are not borreliacidal against the N40 isolate. Our present studies assess whether these selected OspA Abs interfere with B. burgdorferi-tick attachment in a murine model of Lyme disease with I. scapularis. We examined engorged ticks that had fed on B. burgdorferi N40-infected scid mice previously treated with OspA (N40, ACA-1, ZQ-1, or mAb C3.78) or control Abs. OspA-N40 antisera or mAb C3.78 destroyed B. burgdorferi N40 within the engorged ticks. In contrast, treatment of mice with OspA-ACA-1 and OspA-ZQ-1 antisera did not kill B. burgdorferi N40 within the ticks but did effectively interfere with B. burgdorferi-I. scapularis adherence, thereby preventing efficient colonization of the vector. These studies show that nonborreliacidal OspA Abs can inhibit B. burgdorferi attachment to the tick gut, highlighting the importance of OspA in spirochete-arthropod interactions in vivo.  相似文献   

6.
Fifty Borrelia isolates from ticks and rodents from several geographic regions of the southern United States were analyzed by genomic macrorestriction analysis. Significant genetic diversity was observed among them. These isolates segregated into 4 major clusters and 10 subclusters, which are correlated with the genospecies distribution. Nineteen pulsed-field gel electrophoresis (PFGE) types were recognized among the isolates. The genospecies Borrelia andersonii and Borrelia bissettii consisted of 5 and 2 subclusters, respectively. Two subclusters comprised the Borrelia burgdorferi sensu stricto (s. s.) strains. These results indicated that PFGE is a suitable molecular typing method for B. burgdorferi at both the genospecies and strain levels. Seventeen representative isolates from different PFGE groups were analyzed by restriction fragment length polymorphism (RFLP) and sequence analysis of flaB. Twenty-three AluI, 3 CelII, and 11 DdeI RFLP patterns were found among strains from the B. burgdorferi sensu lato (s. l.) complex and the relapsing fever borreliae complex. Three genospecies in the B. burgdorferi s. l. complex and 1 species in the relapsing fever borreliae complex were recognized. Phylogenetic analysis based on nucleotide sequences of flaB indicated that all the Borrelia strains analyzed here could be divided into 2 parts, i.e., B. burgdorferi s. l. complex and the relapsing fever borreliae complex. The flaB appears to be a useful target gene to screen and identify strains from both B. burgdorferi s. l. and relapsing fever borreliae complexes.  相似文献   

7.
In a previous study, we described the development of a new specific serodiagnostic test for Lyme disease involving enzyme-linked immunosorbent assay and a synthetic peptide, OspC-I. The OspC-I peptide is derived from part of the outer surface protein C (OspC) amino acid sequence of Borrelia burgdorferi and is located in the region conserved among B. burgdorferi sensu stricto or sensu lato isolates. In this study, we demonstrate that sera containing antibodies against OspC-I from patients with early Lyme disease had borreliacidal activity against isolates of three genospecies of Lyme disease spirochete, B. burgdoreferi B31, B. garinii HPI and B. afzelii HT61. However, the borreliacidal activity against B. burgdorferi, which has not been isolated in Japan, was weaker than that against the other species. Vaccination of mice with OspC-I induced the production of anti-OspC-I antibodies in serum with borreliacidal activity. The immune mouse serum had significantly higher levels of borreliacidal activity against HP1 and HT61, than against B31. Neutralization of borreliacidal activity with anti-IgM antibodies showed that the borreliacidal activity of anti-OspC-I antibodies in serum was due to IgM. Furthermore. mice vaccinated with OspC-I were protected against challenge with HPI and HT61. but not fully protected against infection with B31. These results suggest that OspC-I is not only a specific antigen for use in serodiagnostic tests for Lyme disease, but is also a potential candidate for a Lyme disease vaccine in Japan.  相似文献   

8.
Borrelia burgdorferi sensu lato (s.l.), the tick-borne agent of Lyme borreliosis, is a bacterial species complex comprising 11 genospecies. Here, we discuss whether the delineation of genospecies is ecologically relevant. We provide evidence that B. burgdorferi s.l. is structured ecologically into distinct clusters that are host specific. An immunological model for niche adaptation is proposed that suggests the operation of complement-mediated selection in the midgut of the feeding tick. We conclude that vertebrate hosts rather than tick species are the key to Lyme borreliosis spirochaete diversity.  相似文献   

9.
Thirty-five strains of the Lyme disease spirochete Borrelia burgdorferi sensu lato (B. burgdorferi s. l.) were isolated from the blacklegged tick vector Ixodes scapularis in South Carolina, Georgia, Florida, and Rhode Island. They were characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. PCR-RFLP analysis indicated that the strains represented at least 3 genospecies (including a possible novel genospecies) and 4 different restriction patterns. Thirty strains belonged to the genospecies B. burgdorferi sensu stricto (B. burgdorferi s. s.), 4 southern strains were identified as B. bissettii, and strain SCCH-5 from South Carolina exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Complete sequences of rrf-rrl intergenic spacers from 14 southeastern and northeastern strains were determined and the phylogenetic relationships of these strains were compared. The 14 strains clustered into 3 separate lineages on the basis of sequence analysis. These results were confirmed by phylogenetic analysis based on 16S rDNA sequence analysis.  相似文献   

10.
The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.  相似文献   

11.
In Europe the Borrelia burgdorferi sensu lato complex is represented by five distinct genospecies: Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, and Borrelia lusitaniae. These taxonomic entities are known to differ in their specific associations with vertebrate hosts and to provoke distinct clinical manifestations in human patients. However, exceptions to these rules have often been observed, indicating that strains belonging to a single genospecies may be more heterogeneous than expected. It is, therefore, important to develop alternative identification tools which are able to distinguish Borrelia strains not only at the specific level but also at the intraspecific level. DNA from a sample of 370 Ixodes ricinus ticks collected in the Czech Republic was analyzed by PCR for the presence of a approximately 230-bp fragment of the rrfA-rrlB intergenic spacer of Borrelia spp. A total of 20.5% of the ticks were found to be positive. The infecting genospecies were identified by analyzing the amplified products by the restriction fragment length polymorphism (RFLP) method with restriction enzyme MseI and by single-strand conformation polymorphism (SSCP) analysis. The two methods were compared, and PCR-SSCP analysis appeared to be a valuable tool for rapid identification of spirochetes at the intraspecific level, particularly when large samples are examined. Furthermore, by using PCR-SSCP analysis we identified a previously unknown Borrelia genotype, genotype I-77, which would have gone unnoticed if RFLP analysis alone had been used.  相似文献   

12.
The distribution of Borrelia burgdorferi sensu lato genospecies in questing Ixodes ricinus ticks from ecologically distinct habitats in Latvia was analyzed. A significant variation in the frequency of the genospecies across sites was observed, pointing to the importance of the host community in the ecology of Lyme borreliosis.  相似文献   

13.
Spirochete bacteria of the Borrelia burgdorferi sensu lato complex cause Lyme borreliosis. The three pathogenic subspecies Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto differ in their disease profiles and susceptibility to complement lysis. We investigated whether complement resistance of Borreliae could be due to acquisition of the main soluble inhibitors of the alternative complement pathway, factor H and the factor H-like protein 1. When exposed to nonimmune EDTA-plasma, the serum-resistant B. afzelii and B. burgdorferi sensu stricto strains bound factor H/factor H-like protein 1 to their surfaces. Assays with radiolabeled proteins showed that factor H bound strongly to the B. burgdorferi sensu stricto strain. To identify factor H ligands on the borrelial surface, we analyzed a panel of outer surface proteins of B. burgdorferi sensu stricto with the surface plasmon resonance technique. The outer surface lipoprotein OspE was identified as a specific ligand for factor H. Using recombinant constructs of factor H, the binding site for OspE was localized to the C-terminal short consensus repeat domains 15-20. Specific binding of factor H to B. burgdorferi sensu stricto OspE may help the pathogen to evade complement attack and phagocytosis.  相似文献   

14.
The pathogen Borrelia burgdorferi causes Lyme Borreliosis in human and animals world-wide. In Europe the pathogen is transmitted to the host by the vector Ixodes ricinus. The nymph is the primary instar for transmission to humans. We here study the infection rate of five Borrelia genospecies: B. burgdorferi sensu stricto, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae in nymphs, by IFA and PCR. 600 nymphs were collected in North Zealand of Denmark. Each nymph was first analysed by IFA. If positive for spirochaetal infection, the genospecies was determined by PCR. The infection rate of B. burgdorferi sensu lato was 15.5%, with the primary genospecies being B. afzelii (64.3%), B. garinii (57.1%), and B. lusitaniae (26.8%). It is the first time B. lusitaniae is documented in Denmark. Even though, the highest infection rate was discovered for B. afzelii and B. garinii, mixed infections are more common than single infections. Fifty-one percent (29/56) of these were infected with two genospecies, 7.1% (4/56) with three, and 5.3% (3/56) with four. We try to explain the high infection rate and the peculiar number of multiple infections, with a discussion of changes host abundance and occurrence of different transmission patterns.  相似文献   

15.
Unfed nymphal and adult Ixodes ricinus ticks were collected from five locations within the 10,000-ha Killarney National Park, Ireland. The distribution and prevalence of the genomospecies of Borrelia burgdorferi sensu lato in the ticks were investigated by PCR amplification of the intergenic spacer region between the 5S and 23S rRNA genes and by reverse line blotting with genomospecies-specific oligonucleotide probes. The prevalence of ticks infected with B. burgdorferi sensu lato was significantly variable between the five locations, ranging from 11.5 to 28.9%. Four genomospecies were identified as B. burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, and VS116. Additionally, untypeable B. burgdorferi sensu lato genomospecies were identified in two nymphs. VS116 was the most prevalent of the genomospecies and was identified in 50% of the infected ticks. Prevalences of B. garinii and B. burgdorferi sensu stricto were similar (17 and 18%, respectively); however, significant differences were observed in the prevalence of these genomospecies in mixed infections (58.8 and 23.5%, respectively). Notably, the prevalence of B. afzelii was low, comprising 9.6 and 7.4%, respectively, of single and mixed infections. Significant variability was observed in the distribution and prevalence of B. burgdorferi sensu lato genomospecies between locations in the park, and the diversity and prevalence of B. burgdorferi sensu lato genomospecies was typically associated with woodland. The distributions of B. burgdorferi sensu lato genomospecies were similar in wooded areas and in areas bordering woodland, although the prevalence of B. burgdorferi sensu lato infection was typically reduced. Spatial distributions vegetation composition, and host cenosis of the habitats were identified as factors which may affect the distribution and prevalence of B. burgdorferi sensu lato genomospecies within the park.  相似文献   

16.
A field survey was conducted to investigate the presence of Borrelia burgdorferi sensu lato (s.l.) in six counties of Taiwan. Spirochetes were successfully isolated from one rodent ear sample out of 485 rodent ears and 53 live, fed tick (Ixodes granulatus) samples. The spirochetes were confirmed to be B. burgdorferi s.l. by real-time PCR. In addition, 23 of 113 tick samples were tested positive for Borrelia DNA according to real-time PCR. The Borrelia isolate from the rodent and the 23 Borrelia DNA samples from the ticks were identified as B. valaisiana-related genospecies by phylogenetic analysis based on flagellin gene sequences. These findings suggest that the Borrelia valaisiana-related strains are maintained in a zoonotic cycle between tick vectors and reservoir hosts in Taiwan.  相似文献   

17.
In order to evaluate the presence of specific IgG antibodies to Borrelia burgdorferi in patients with clinical manifestations associated with Lyme borreliosis in Cali, Colombia, 20 serum samples from patients with dermatologic signs, one cerebrospinal fluid (CSF) sample from a patient with chronic neurologic and arthritic manifestations, and twelve serum samples from individuals without clinical signs associated with Lyme borreliosis were analyzed by IgG Western blot. The results were interpreted following the recommendations of the Centers for Diseases Control and Prevention (CDC) for IgG Western blots. Four samples fulfilled the CDC criteria: two serum specimens from patients with morphea (localized scleroderma), the CSF from the patient with neurologic and arthritic manifestations, and one of the controls. Interpretation of positive serology for Lyme disease in non-endemic countries must be cautious. However these results suggest that the putative "Lyme-like" disease may correlate with positivity on Western blots, thus raising the possibility that a spirochete genospecies distinct from B. burgdorferi sensu stricto, or a Borrelia species other than B. burgdorferi sensu lato is the causative agent. Future work will focus on a survey of the local tick and rodent population for evidence of spirochete species that could be incriminated as the etiologic agent.  相似文献   

18.
ABSTRACT: BACKGROUND: Lyme disease is a widespread cosmopolitan zoonosis caused by species belonging to the genus Borrelia. It is transmitted from animal reservoir hosts to humans through hard - ticks of genus Ixodes which are vectors of the disease. CASE PRESENTATION: Borrelia burgdorferi sensu lato infection was identified in a marbled polecat, Vormela peregusna, and two European minks, Mustela lutreola, from Romania, by PCR. RFLP revealed the presence of a single genospecies, Borrelia burgdorferi sensu stricto. CONCLUSIONS: This is the first report of the Lyme disease spirochetes in the two mentioned hosts.  相似文献   

19.
In Europe, Borrelia burgdorferi genospecies causing Lyme borreliosis are mainly transmitted by the tick Ixodes ricinus. Since its discovery, B. burgdorferi has been the subject of many epidemiological studies to determine its prevalence and the distribution of the different genospecies in ticks. In the current study we systematically reviewed the literature on epidemiological studies of I. ricinus ticks infected with B. burgdorferi sensu lato. A total of 1,186 abstracts in English published from 1984 to 2003 were identified by a PubMed keyword search and from the compiled article references. A multistep filter process was used to select relevant articles; 110 articles from 24 countries contained data on the rates of infection of I. ricinus with Borrelia in Europe (112,579 ticks), and 44 articles from 21 countries included species-specific analyses (3,273 positive ticks). These data were used to evaluate the overall rate of infection of I. ricinus with Borrelia genospecies, regional distributions within Europe, and changes over time, as well as the influence of different detection methods on the infection rate. While the infection rate was significantly higher in adults (18.6%) than in nymphs (10.1%), no effect of detection method, tick gender, or collection period (1986 to 1993 versus 1994 to 2002) was found. The highest rates of infection of I. ricinus were found in countries in central Europe. B. afzelii and B. garinii are the most common Borrelia species, but the distribution of genospecies seems to vary in different regions in Europe. The most frequent coinfection by Borrelia species was found for B. garinii and B. valaisiana.  相似文献   

20.
This meta-analysis of reports examining ticks throughout the Western Palearctic region indicates a distinct geographic pattern for Borrelia burgdorferi sensu lato prevalence in questing nymphal Ixodes ricinus ticks. The greatest prevalence was reported between the 5°E and 25°E longitudes based on an analysis of 123 collection points with 37,940 nymphal tick specimens (87.43% of total nymphs; 56.35% of total ticks in the set of reports over the target area). Climatic traits, such as temperature and vegetation stress, and their seasonality correlated with Borrelia prevalence in questing ticks. The greatest prevalence was associated with mild winter, high summer, and low seasonal amplitude of temperatures within the range of the tick vector, higher vegetation indices in the May-June period, and well-connected vegetation patches below a threshold at which rates suddenly drop. Classification of the target territory using a qualitative risk index derived from the abiotic variables produced an indicator of the probability of finding infected ticks in the Western Palearctic region. No specific temporal trends were detected in the reported prevalence. The ranges of the different B. burgdorferi sensu lato genospecies showed a pattern of high biodiversity between 4°W and 20°E, partially overlapping the area of highest prevalence in ticks. Borrelia afzelii and Borrelia garinii are the dominant species in central Europe (east of ~25°E), but B. garinii may appear alone at southern latitudes and Borrelia lusitaniae is the main indicator species for meridional territories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号