首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of Khakass gene pool has been investigated: compositions and frequencies of Y-chromosome haplogroups were described in seven population samples of two basic subethnic groups--Sagays and Kachins from three territorially distanced regions of Khakassia Republic. Eight haplogroups: C3, E, N*, N1b, N1c, R1a1a and R1b1b1 have been determined in Khakass gene pool. Significant differences between Sagays and Kachins were shown in haplogroup spectra and a level of genetic diversity in haplogroups and YSTR-haplotypes. Kachin samples are characterized by a low value of gene diversity, whereas the level of Sagay diversity is similar to that of other South-Siberian ethnoses. Sagay samples from Askizsky region are very similar to each other just as two Kachin samples from Shirinsky region, while Sagay samples from Tashtypsky region greatly differ from each other. A great portion of intergroup differences was determined among different ethnic groups, which testifies to significant genetic differentiation of native populations in Khakassia. Khakass gene pool is greatly differentiated both in haplogroup frequencies and in YSTR-haplotypes within N1b haplogroup. Frequencies and molecular phylogenesis of YSTR-haplotypes were revealed within N1b, N1c and R1a1 haplogroups of Y-chromosome. We carried out comparative analysis of the data obtained. The results of factor, cluster and dispersion analyses are evidence of structuredness of Khakass gene pool according to territorial-subethnic principle.  相似文献   

2.
The gene pool structure of Teleuts was examined and Y-chromosomal haplogroups composition and frequencies were determined. In the gene pool of Teleuts, five haplogroups, C3×M77, N3a, R1b*, R1b3, and R1a1, were identified. Evaluation of the genetic differentiation of the samples examined using analysis of molecular variance (AMOVA) with two marker systems (frequencies of haplogroups and Y-chromosomal microsatellite haplotypes) showed that Bachat Teleuts were equally distant from Southern and Northern Altaians. In Siberian populations, the frequencies and molecular phylogeny of the YSTR haplotypes within Y-chromosomal haplogroup R1a1 were examined. It was demonstrated that Teleuts and Southern Altaians had very close and overlapping profiles of R1a1 haplotypes. Population cluster analysis of the R1a1 YSTR haplotypes showed that Teleuts and Southern Altaians were closer to one another than to all remaining Siberian ethnic groups. Phylogenetic analysis of N3a haplotypes suggested specificity of Teleut haplotypes and their closeness to those of Tomsk Tatars. Teleuts were characterized by extremely high frequency of haplogroup R1b*, distinguished for highly specific profile of YSTR haplotypes and high haplotype diversity. The results of the comparative analysis suggested that the gene pool of Bachat Teleuts was formed on the basis of at least two heterogeneous genetic components, probably associated with ancient Turkic and Samoyedic ethnic components.  相似文献   

3.
The gene pool structure was studied for the indigenous population of the Sakha Republic (Yakutia). The composition and frequencies of Y-chromosome haplotypes in Yakuts were characterized. Six haplogroups were observed: C3×M77, C3c, N*, N2, N3a, and R1a1, N3a being the most common (89%). The gene diversity computed from the haplogroup frequencies was low in all samples examined. Gene differentiation was analyzed by AMOVA with two marker systems (haplogroup frequencies and Y-chromosomal microsatellite haplotypes) and was estimated at 0.24 and 2.85%, respectively. The frequencies and molecular phylogeny of the YSTR haplotypes were studied for the N3a haplogroup. In total, 40 haplotypes were found in Yakuts. Evenks and Yakuts displayed highly specific overlapping N3a haplotype spectra, atypical for other Siberian ethnic groups. Cluster analysis with N3a YSTR haplotypes showed that Yakuts are isolated from other Turkic-speaking populations of Southern Siberia. The genetic diversity generation time was estimated at 4450 ± 1960 years for the Yakut haplotype spectrum. In contrast to mtDNA data, the results suggest a significant contribution of the local Paleolithic component to the Y-chromosome gene pool of Yakuts. Ethnogenetic reconstructions were inferred from the diversity and phylogeography of the N3a haplogroup in Siberia.  相似文献   

4.
The gene-pool structure of Tuvinians was examined in terms of the composition and frequency of Y-chromosome haplogroups in five geographically distanct populations. In the Tuvinian gene pool, a total of 22 haplogroups were identified with six of these, which were the most frequent (C3c, C3*, N1b, N1c1, Q1a3, and R1a1a). It was demonstrated that eastern regions of Tuva were most different from the other regions in haplotype frequencies. The evaluation of genetic diversity based on the frequencies of biallelic haplogroups and YSTR haplotypes revealed very high diversity values for all samples. In general, the genetic diversity values identified in Tuvinians were the highest for the indigenous ethnic groups of Siberia. The evaluation of the genetic differentiation of the samples examined using the analysis of molecular variance (AMOVA) showed that the gene pool of Tuvinians was relatively poorly differentiated with respect to haplogroup frequencies. Phylogenetic analysis within haplogroup N1b revealed strong founder effect, i.e., reduced diversity and star-like phylogeny of the median network of haplotypes, which formed a separate subcluster exclusive to Tuvinians. It was demonstrated that, in Tuvinians, haplogroup N1c1 was the most heterogeneous in haplotype profile and consisted of three different haplotype clusters, demonstrating considerable differences of western population from the rest of the Tuva populations. Phylogenetic analysis of haplogroups revealed common components for Tuvinians, Khakasses, Altaians, and Mongols.  相似文献   

5.
Gene pool structure of Sakha Republic (Yakutia) native population has been studied: we defined composition and frequencies of Y-chromosome haplogroups for Yakuts. Six haplogroups: C3 x M77, C3c, N*, N2, N3a and R1a1 have been revealed in Yakut gene pool. A greater part of Y-chromosome in Yakut population belongs to N3a haplogroup (89%). All investigated Yakut population samples have low values of gene diversity, calculated based on haplogroup frequencies. Gene differentiation of the investigated samples estimated using the analysis of molecular variance (AMOVA) by two marker systems (haplogroup frequencies and microsatellite haplotypes of Y-chromosome) revealed a portion of interpopulation differences amounting to 0.24 and 2.85%, respectively. Frequencies and molecular phylogeny of YSTR-haplotypes were revealed for N3a haplogroup of Y-chromosome. Altogether forty haplotypes were found in Yakuts. Evenks and Yakuts are characterized by overlapping and very specific spectrum of N3a haplotypes, which is not typical for other Siberian ethnic groups. Cluster analysis of populations by N3a YSTR-haplotypes shows Yakut isolation from Turkic-speaking populations in the South Siberia. Genetic diversity generation time for a specific spectrum of Yakut haplotypes was estimated as 4.45 +/- 1.96 thousand years. As opposed to the data on mtDNA, the obtained results give an evidence for significant contribution of a local palaeolithic component into Y-chromosomal Yakut gene pool. Ethnogenetic reconstruction of the present picture of genetic diversity in N3a haplogroup in the territory of Siberia is under consideration.  相似文献   

6.
The structure of the Buryat gene pool has been studied based on the composition and frequency of Y-chromosome haplogroups in eight geographically distant populations. Eleven haplogroups have been found in the Buryat gene pool, two of which are the most frequent (N1c1 and C3d). The greatest difference in haplogroup frequencies was fixed between western and eastern Buryat samples. The evaluation of genetic diversity based on haplogroup frequencies revealed that it has low values in most of the samples. The evaluation of the genetic differentiation of the examined samples using an analysis of molecular variance (AMOVA) shows that the Buryat gene pool is highly differentiated by haplotype frequencies. Phylogenetic analysis within haplogroups N1c1 and C3d revealed a strong founder effect, i.e., reduced diversity and starlike phylogeny of the median network of haplotypes that form specific subclusters. The results of a phylogenetic analysis of the haplogroups identified common genetic components for Buryats and Mongols.  相似文献   

7.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structured nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno--Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and 03 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

8.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structuring nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno-Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and O3 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

9.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

10.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

11.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, and M56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno-Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

12.
The genetic diversity in two ethnic groups of the central part of the North Caucasus (Balkars and Karachays) using 50 diallelic loci in the non-recombining region of the Y chromosome was analyzed. For the first time, an analysis of distribution of frequencies of Y-chromosome haplogroups in Balkars considering different subethnic groups (Baksans, Chegems, Kholams, Bezengiyevs, and Malkars) was conducted. The major Y-chromosome haplogroups in the studied groups of Balkars and Karachays were G2a-P16 and R1a- Z2123. In addition, for a better understanding of genetic relationship between the male lineages in the studied populations and other populations of the Caucasus, we performed an analysis of R1a-M198 subhaplogroups in 22 populations of this region. The principal component analysis demonstrated that a greater difference was observed between Kholams and the other Balkar subgroups. According to the F st analysis, Chegems, for which the prevalence of haplogroup R1b-M478 (32.2%) was reported, demonstrated the maximum difference from the other subpopulations of Balkars and Karachays.  相似文献   

13.
Excavating Y-chromosome haplotype strata in Anatolia   总被引:1,自引:0,他引:1  
Analysis of 89 biallelic polymorphisms in 523 Turkish Y chromosomes revealed 52 distinct haplotypes with considerable haplogroup substructure, as exemplified by their respective levels of accumulated diversity at ten short tandem repeat (STR) loci. The major components (haplogroups E3b, G, J, I, L, N, K2, and R1; 94.1%) are shared with European and neighboring Near Eastern populations and contrast with only a minor share of haplogroups related to Central Asian (C, Q and O; 3.4%), Indian (H, R2; 1.5%) and African (A, E3*, E3a; 1%) affinity. The expansion times for 20 haplogroup assemblages was estimated from associated STR diversity. This comprehensive characterization of Y-chromosome heritage addresses many multifaceted aspects of Anatolian prehistory, including: (1) the most frequent haplogroup, J, splits into two sub-clades, one of which (J2) shows decreasing variances with increasing latitude, compatible with a northward expansion; (2) haplogroups G1 and L show affinities with south Caucasus populations in their geographic distribution as well as STR motifs; (3) frequency of haplogroup I, which originated in Europe, declines with increasing longitude, indicating gene flow arriving from Europe; (4) conversely, haplogroup G2 radiates towards Europe; (5) haplogroup E3b3 displays a latitudinal correlation with decreasing frequency northward; (6) haplogroup R1b3 emanates from Turkey towards Southeast Europe and Caucasia and; (7) high resolution SNP analysis provides evidence of a detectable yet weak signal (<9%) of recent paternal gene flow from Central Asia. The variety of Turkish haplotypes is witness to Turkey being both an important source and recipient of gene flow.  相似文献   

14.
Y chromosomes from representative sample of Eastern Ukrainians (94 individuals) were analyzed for composition and frequencies of haplogroups, defined by 11 biallelic loci located in non-recombining part of the chromosome (SRY1532, YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25,M89, andM56). In the Ukrainian gene, pool six haplogroups were revealed: E, F (including G and I), J, N3, P, and R1a1. These haplogroups were earlier detected in a study of Y-chromosome diversity on the territory of Europe as a whole. The major haplogroup in the Ukrainian gene pool, haplogroup R1a1 (earlier designated HG3), accounted for about 44% of all Y chromosomes in the sample examined. This haplogroup is thought to mark the migration patterns of the early Indo-Europeans and is associated with the distribution of the Kurgan archaeological culture. The second major haplogroup is haplogroup F (21.3%), which is a combination of the lineages differing by the time of appearance. Haplogroup P found with the frequency of 9.6%, represents the genetic contribution of the population originating from the ancient autochthonous population of Europe. Haplogroups J and E (11.7 and 4.2%, respectively) mark the migration patterns of the Middle-Eastern agriculturists during the Neolithic. The presence of the N3 lineage (9.6%) is likely explained by a contribution of the assimilated Finno–Ugric tribes. The data on the composition and frequencies of Y-chromosome haplogroups in the sample studied substantially supplement the existing picture of the male lineage distribution in the Eastern Slav population.  相似文献   

15.
Polymorphism of mtDNA was examined in five ethnic populations that belong to the Turkic language group and inhabit the territory of the Altai-Sayan upland (N = 1007). Most of the haplogroups identified in the examined populations belonged to East Eurasian lineages. In all five populations, only three haplogroups, C, D, and F, were prevailing. The frequencies of the other six haplogroups (A, B, G, M, Y, and Z) varied in the range from 1.1 to 6.5%. Among West Eurasian haplogrous, the most common were haplogroups H, J, T, and U. An analysis of Y-chromosome haplogroups in 407 individuals showed that only two haplogroups, N* and R1a1, were present in all five populations examined. Moreover, in different ethnic groups, the highest frequencies were observed for C-M130, N-P43, and N-Tat haplogroups. The differences in the distribution patterns of ancient West Eurasian and East Eurasian haplotypes from Gorny Altai in the present-day populations from the northern part of Eurasia revealed can be explained in terms of the multistage expansion of humans across these territories. The ubiquity of haplotypes from haplogroup H and cluster U across the wide territory from the Yenisei River basin to the Atlantic Ocean can indicate directional human expansion, which most likely occurred out of Central Asia as early as in the Paleolithic era, and took place in several waves with the glacier retreat.  相似文献   

16.
MtDNA and Y-chromosome lineages in the Yakut population   总被引:1,自引:0,他引:1  
The structure of female (mtDNA) and male (Y-chromosome haplotypes) lineages in the Yakut population was examined. To determine mtDNA haplotypes, sequencing of hypervariable segment I and typing of haplotype-specific point substitutions in the other parts of the mtDNA molecule were performed. Y haplogroups were identified through typing of biallelic polymorphisms in the nonrecombining part of the chromosome. Haplotypes within haplogroups were analyzed with seven microsatellite loci. Mitochondrial gene pool of Yakuts is mainly represented by the lineages of eastern Eurasian origin (haplogroups A, B, C, D, G, and F). In Yakuts haplogroups C and D showing the total frequency of almost 80% and consisting of 12 and 10 different haplopypes, respectively, were the most frequent and diverse. The total part of the lineages of western Eurasian origin ("Caucasoid") was about 6% (4 haplotypes, haplogroups H, J, and U). Most of Y chromosomes in the Yakut population (87%) belonged to haplogroup N3 (HG16), delineated by the T-C substitution at the Tat locus. Chromosomes of haplogroup N3 displayed the presence of 19 microsatellite haplotypes, the most frequent of which encompassed 54% chromosomes of this haplogroup. Median network of haplogroup N3 in Yakuts demonstrated distinct "starlike phylogeny". Male lineages of Yakuts were shown to be closest to those of Eastern Evenks.  相似文献   

17.
本研究基于75个Y-SNP位点和23个Y-STR基因座对山东汉、回族男性人群进行研究,旨在揭示两个人群的父系遗传结构,为法医学应用及群体遗传学等提供基础数据。研究基于微测序技术检测187份山东汉族和130份山东回族样本,获取75个Y-SNP位点分型;采用PowerPlex®Y23试剂盒检测23个Y-STR基因座;采用直接计数法统计等位基因频率、单倍型频率及单倍群频率,根据公式D=n(1-∑pi2)/(n-1)计算基因多样性、单倍型多样性以及单倍群多样性;根据Median-joining方法,使用NETWORK 5.0和NETWORK Publisher构建并展示网络图。研究结果显示,单倍群O-M175、C-M130、N-M231、Q-M242为山东汉族男性人群主要的Y单倍群,单倍群O-M175、J-M304、R-M207、C-M130、N-M231为山东回族男性人群最主要的单倍群;23个Y-STR基因座在山东汉族男性样本中检出187种单倍型,单倍型多样性为1.0000,在山东回族中检出121种单倍型,单倍型多样性为0.9988;网络图显示同一Y单倍群的样本相对独立地聚集在一起,山东汉族与回族人群之间存在共享单倍群,同时也存在一些特异性单倍群,如单倍群J-M304、R-M207均以山东回族为主,单倍群Q-M242则以山东汉族为主。山东汉族和回族男性人群的主要单倍群均为单倍群O-M175;单倍群J-M304、R-M207在山东回族中的高频分布,单倍群Q-M242则在山东汉族中高频分布。研究表明山东回族人群中保留有一定比例的欧亚西部和中东特有的Y染色体类型。  相似文献   

18.
This study examines the genetic variation in Basque Y chromosome lineages using data on 12 Y-short tandem repeat (STR) loci in a sample of 158 males from four Basque provinces of Spain (Alava, Vizcaya, Guipuzcoa, and Navarre). As reported in previous studies, the Basques are characterized by high frequencies of haplogroup R1b (83%). AMOVA analysis demonstrates genetic homogeneity, with a small but significant amount of genetic structure between provinces (Y-short tandem repeat loci STRs: 1.71%, p = 0.0369). Gene and haplotype diversity levels in the Basque population are on the low end of the European distribution (gene diversity: 0.4268; haplotype diversity: 0.9421). Post-Neolithic contribution to the paternal Basque gene pool was estimated by measuring the proportion of those haplogroups with a Time to Most Recent Common Ancestor (TMRCA) previously dated either prior (R1b, I2a2) or subsequent to (E1b1b, G2a, J2a) the Neolithic. Based on these estimates, the Basque provinces show varying degrees of post-Neolithic contribution in the paternal lineages (10.9% in the combined sample).  相似文献   

19.
Mitochondrial DNA has been the traditional marker for the study of animal domestication, as its high mutation rate allows for the accumulation of molecular diversity within the time frame of domestic history. Additionally, it is exclusively maternally inherited and haplotypes become part of the domestic gene pool via actual capture of a female animal rather than by interbreeding with wild populations. Initial studies of British aurochs identified a haplogroup, designated P, which was found to be highly divergent from all known domestic haplotypes over the most variable portion of the D-loop. Additional analysis of a large and geographically representative sample of aurochs from northern and central Europe found an additional, separate aurochs haplotype, E. Until recently, the European aurochs appeared to have no matrilinear descendants among the publicly available modern cattle control regions sequenced; if aurochs mtDNA was incorporated into the domestic population, aurochs either formed a very small proportion of modern diversity or had been subsequently lost. However, a haplogroup P sequence has recently been found in a modern sample, along with a new divergent haplogroup called Q. Here we confirm the outlying status of the novel Q and E haplogroups and the modern P haplogroup sequence as a descendent of European aurochs, by retrieval and analysis of cytochrome b sequence data from twenty ancient wild and domesticated cattle archaeological samples.  相似文献   

20.
Previous studies have shown that there were extensive genetic admixtures in the Silk Road region. In the present study, we analyzed 252 mtDNAs of five ethnic groups (Uygur, Uzbek, Kazak, Mongolian, and Hui) from Xinjiang Province, China (through which the Silk Road once ran) together with some reported data from the adjacent regions in Central Asia. In a simple way, we classified the mtDNAs into different haplogroups (monophyletic clades in the rooted mtDNA tree) according to the available phylogenetic information and compared their frequencies to show the differences among the matrilineal genetic structures of these populations with different demographic histories. With the exception of eight unassigned M*, N*, and R* mtDNAs, all the mtDNA types identified here belonged to defined subhaplogroups of haplogroups M and N (including R) and consisted of subsets of both the eastern and western Eurasian pools, thus providing direct evidence supporting the suggestion that Central Asia is the location of genetic admixture of the East and the West. Although our samples were from the same geographic location, a decreasing tendency of the western Eurasian-specific haplogroup frequency was observed, with the highest frequency present in Uygur (42.6%) and Uzbek (41.4%) samples, followed by Kazak (30.2%), Mongolian (14.3%), and Hui (6.7%). No western Eurasian type was found in Han Chinese samples from the same place. The frequencies of the eastern Eurasian-specific haplogroups also varied in these samples. Combined with the historical records, ethno-origin, migratory history, and marriage customs might play different roles in shaping the matrilineal genetic structure of different ethnic populations residing in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号