首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Colon carcinoma is a common type of neoplastic transformation. Mechanisms of its establishment and progression have been studying for several decades. Aberrant activation of the canonical Wnt signaling is frequently observed in colon carcinoma cells. Moreover, expression of the "noncanonical" Wnt ligands is also detected in this type of cancer. However, the implication of the noncanonical Wnt signaling in carcinogenesis and colorectal cancer (CRC) progression is still unclear. Here, to elucidate the characteristic features of the noncanonical Wnt signaling activation in CRC the expression of the "noncanonical" ligand hWnt11 has been studied. It was shown for the first time that expression of the hWnt11 in CRC is accompanied by the alternative splicing. The new hWnt11 isoform (hWnt11sp3) has been identified. Unlike to hWnt11, this isoform is not secreted and lacks the ability to inhibit the canonical Wnt signaling. Considering the canonical Wnt signaling inhibiting activity of hWnt11, different functional properties of the ligand and its isoform may reflect a special role of the alternative splicing in carcinogenesis and tumor progression. Thus, due to the difference in their functional properties an existence of several Wnt isoforms should be taken into account for the investigation of the role of Wnt ligands.  相似文献   

2.
3.
4.
5.
The effect of a noncanonical Wnt, Wnt11, on canonical Wnt signaling stimulated by Wnt1 and activated forms of LRP5 (low density lipoprotein receptor-related protein-5), Dishevelled1 (Dvl1), and beta-catenin was examined in NIH3T3 cells and P19 embryonic carcinoma cells. Wnt11 repressed Wnt1-mediated activation of LEF-1 reporter activity in both cell lines. However, Wnt11 was unable to inhibit canonical signaling activated by LRP5, Dvl1, or beta-catenin in NIH3T3 cells, although it could in P19 cells. In addition, Wnt11-mediated inhibition of canonical signaling in NIH3T3 cells is ligand-specific; Wnt11 could effectively repress canonical signaling activated by Wnt1, Wnt3, or Wnt3a but not by Wnt7a or Wnt7b. Co-culture experiments with NIH3T3 cells showed that the co-expression of Wnt11 with Wnt1 was not an essential requirement for the inhibition, suggesting receptor competition as a possible mechanism. Moreover, in both cell types, elevation of intracellular Ca(2+) levels, which can result from Wnt11 treatment, led to the inhibition of canonical signaling. This result suggests that Wnt11 might not be able to signal in NIH3T3. Furthermore, P19 cells were found to express both endogenous canonical Wnts and Wnt11. Knockdown of Wnt11 expression using siRNA resulted in increased LEF-1 reporter activity, thus indicating that Wnt11-mediated suppression of canonical signaling exists in vivo.  相似文献   

6.
R Sugimura  XC He  A Venkatraman  F Arai  A Box  C Semerad  JS Haug  L Peng  XB Zhong  T Suda  L Li 《Cell》2012,150(2):351-365
Wnt signaling is involved in self-renewal and maintenance of hematopoietic stem cells (HSCs); however, the particular role of noncanonical Wnt signaling in regulating HSCs in vivo is largely unknown. Here, we show Flamingo (Fmi) and Frizzled (Fz) 8, members of noncanonical Wnt signaling, both express in and functionally maintain quiescent long-term HSCs. Fmi regulates Fz8 distribution at the interface between HSCs and N-cadherin(+) osteoblasts (N-cad(+)OBs that enrich osteoprogenitors) in the niche. We further found that N-cad(+)OBs predominantly express noncanonical Wnt ligands and inhibitors of canonical Wnt signaling under homeostasis. Under stress, noncanonical Wnt signaling is attenuated and canonical Wnt signaling is enhanced in activation of HSCs. Mechanistically, noncanonical Wnt signaling mediated by Fz8 suppresses the Ca(2+)-NFAT- IFNγ pathway, directly or indirectly through the CDC42-CK1α complex and also antagonizes canonical Wnt signaling in HSCs. Taken together, our findings demonstrate that noncanonical Wnt signaling maintains quiescent long-term HSCs through Fmi and Fz8 interaction in the niche.  相似文献   

7.
The signaling molecule Wnt regulates bone homeostasis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Impairment of canonical Wnt signaling causes bone loss in arthritis and osteoporosis; however, it is unclear how noncanonical Wnt signaling regulates bone resorption. Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor (Ror) proteins. We showed that Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhanced osteoclastogenesis. Osteoblast-lineage cells expressed Wnt5a, whereas osteoclast precursors expressed Ror2. Mice deficient in either Wnt5a or Ror2, and those with either osteoclast precursor-specific Ror2 deficiency or osteoblast-lineage cell-specific Wnt5a deficiency showed impaired osteoclastogenesis. Wnt5a-Ror2 signals enhanced receptor activator of nuclear factor-κB (RANK) expression in osteoclast precursors by activating JNK and recruiting c-Jun on the promoter of the gene encoding RANK, thereby enhancing RANK ligand (RANKL)-induced osteoclastogenesis. A soluble form of Ror2 acted as a decoy receptor of Wnt5a and abrogated bone destruction in mouse arthritis models. Our results suggest that the Wnt5a-Ror2 pathway is crucial for osteoclastogenesis in physiological and pathological environments and represents a therapeutic target for bone diseases, including arthritis.  相似文献   

8.
Neuroblastoma (NB) is one of the most common heterogeneous extracranial cancers in infancy that arises from neural crest (NC) cells of the sympathetic nervous system. The Wnt signaling pathway, both canonical and noncanonical pathway, is a highly conserved signaling pathway that regulates the development and differentiation of the NC cells during embryogenesis. Reports suggest that aberrant activation of Wnt ligands/receptors in Wnt signaling pathways promote progression and relapse of NB. Wnt signaling pathways regulate NC induction and migration in a similar manner; it regulates proliferation and metastasis of NB. Inhibiting the Wnt signaling pathway or its ligands/receptors induces apoptosis and abrogates proliferation and tumorigenicity in all major types of NB cells. Here, we comprehensively discuss the Wnt signaling pathway and its mechanisms in regulating the development of NC and NB pathogenesis. This review highlights the implications of aberrant Wnt signaling in the context of etiology, progression, and relapse of NB. We have also described emerging strategies for Wnt-based therapies against the progression of NB that will provide new insights into the development of Wnt-based therapeutic strategies for NB.  相似文献   

9.
10.
Wnt glycoproteins are developmentally essential signaling molecules, and lesions afflicting Wnt pathways play important roles in human diseases. Some Wnts signal to the canonical pathway by stabilizing beta-catenin, while others lack this activity. Frizzled serpentine receptors mediate distinct signaling pathways by both classes of Wnts. Here, we tandemly linked noncanonical Wnt5a with the C-terminal half of Dickkopf-2 (Dkk2C), a distinct ligand of the Wnt coreceptor LRP5/6. Whereas Wnt5a, Dkk2C, or both together were incapable of stimulating endogenous canonical signaling, the Wnt5a/Dkk2C chimera efficiently activated this pathway in a manner inhibitable by specific antagonists of either frizzled or LRP receptors. Thus, activation of the canonical pathway requires ligand coupling of an endogenous frizzled/LRP coreceptor complex, rather than Wnt triggering each receptor independently. Moreover, fusion of Wnt5a with Dkk2C unmasked its ability to signal to Dishevelled through multiple frizzleds, indicating that the lack of functional interaction with LRP distinguishes noncanonical Wnt5a from canonical Wnts in mammalian cells. These findings provide a novel mechanism by which the same receptor can be switched between distinct signaling pathways depending on the differential recruitment of a coreceptor by members of the same ligand family.  相似文献   

11.
In most cases, advanced stages of melanoma are practically incurable due to high metastatic potential of tumor cells. Multiple observations support the idea that aberrations in the Wnt signaling pathway play a significant role in melanoma development and progression. Canonical Wnt signaling activation results in stabilization and accumulation of the major effector molecule called & gb-catenin. Mutations promoting & gb-catenin stabilization and, thereby, activation of canonical Wnt signaling pathway are frequently found in different cancers but rarely observed in melanomas. Nevertheless, & gb-catenin nuclear and cytoplasmic accumulation is the feature of many human melanoma cell lines and original tumors. That is why the aim of the investigation was to elucidate the relation between & gb-catenin intracellular localization and activity status of Wnt signaling pathway in human melanoma cell lines. Ten human melanoma cell lines were characterized on the basis of the following parameters: canonical Wnt ligand expression, intracellular & gb-catenin localization and activity status of canonical Wnt signaling pathway. Here, it has been demonstrated that nuclear localization of & gb-catenin does not always correspond to active status of canonical Wnt signaling pathway. Moreover, in the majority of cell lines with nuclear & gb-catenin, canonical Wnt signaling cannot be activated by exogenous expression of an appropriate ligand. Human melanoma cell lines differ in activity of canonical Wnt signaling pathway as well as in mechanisms of its regulation. Therefore, pathway-targeted potential antineoplastic therapy requires the formation of a & ldmolecular pattern of cancer” for localization of the defect in Wnt signaling cascade in each case.  相似文献   

12.
In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.  相似文献   

13.
The epithelial–mesenchymal transition (EMT) occurs commonly during carcinoma invasion and metastasis, but not during early tumorigenesis. Microarray data demonstrated elevation of vimentin, a mesenchymal marker, in intestinal adenomas from Apc Min/+ (Min) mice. We have tested the involvement of EMT in early tumorigenesis in mammalian intestines by following EMT-associated markers. Elevated vimentin RNA expression and protein production were detected within neoplastic cells in murine intestinal adenomas. Similarly, vimentin protein was detected in both adenomas and invasive adenocarcinomas of the human colon, but not in the normal colonic epithelium or in hyperplastic polyps. Expression of E-cadherin varied inversely with vimentin. In addition, the expression of fibronectin was elevated while that of E-cadherin decreased. Canonical E-cadherin suppressors, such as Snail, were not elevated in the same tumor. Elevated vimentin expression in the adenoma was not correlated with persistent Ras signaling, but was strongly correlated with reduced proliferation indices, active Wnt signaling, and TGF-β signaling, as demonstrated by its dependence on Smad3. We designate our observations of expression of only some of the canonical features of EMT as “truncated EMT”. These unexpected observations are interpreted as reflecting the involvement of a core of the EMT system during the tissue remodeling of early tumorigenesis.  相似文献   

14.
The Wnt signaling pathway is central to the development of all animals and to cancer progression, yet largely unknown are the pairings of secreted Wnt ligands to their respective Frizzled transmembrane receptors or, in many cases, the relative contributions of canonical (beta-catenin/LEF/TCF) versus noncanonical Wnt signals. Specifically, in the kidney where Wnt-4 is essential for the mesenchymal to epithelial transition that generates the tissue's collecting tubules, the corresponding Frizzled receptor(s) and downstream signaling mechanism(s) are unclear. In this report, we addressed these issues using Madin-Darby Canine Kidney (MDCK) cells, which are competent to form tubules in vitro. Employing established reporter constructs of canonical Wnt/beta-catenin pathway activity, we have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions, precisely reflecting functional findings from Wnt-4 null kidney mesenchyme ex vivo rescue studies. We have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/beta-catenin pathway using beta-Engrailed and dnTCF-4 constructs that suppress this pathway. We have further found that MDCK cells express the Frizzled-6 receptor and that Wnt-4 forms a biochemical complex with the Frizzled-6 CRD. Since Frizzled-6 did not appear to transduce Wnt-4's canonical signal, data supported recently by Golan et al., there presumably exists another as yet unknown Frizzled receptor(s) mediating Wnt-4 activation of beta-catenin/LEF/TCF. Finally, we report that canonical Wnt/beta-catenin signals cells help maintain cell growth and survival in MDCK cells but do not contribute to standard HGF-induced (nonphysiologic) tubule formation. Our results in combination with work from Xenopus laevis (not shown) lead us to believe that Wnt-4 binds both canonical and noncanonical Frizzled receptors, thereby activating Wnt signaling pathways that may each contribute to kidney tubulogenesis.  相似文献   

15.
Wnts are lipid-modified secreted glycoproteins that regulate diverse biological processes. We report that Wnt5a, which functions in noncanonical Wnt signaling, has activity on endothelial cells. Wnt5a is endogenously expressed in human primary endothelial cells and is expressed in murine vasculature at several sites in mouse embryos and tissues. Expression of exogenous Wnt5a in human endothelial cells promoted angiogenesis. Wnt5a induced noncanonical Wnt signaling in endothelial cells, as measured by Dishevelled and ERK1/2 phosphorylation, and inhibition of canonical Wnt signaling, a known property of Wnt5a. Wnt5a induced endothelial cell proliferation and enhanced cell survival under serum-deprived conditions. The Wnt5a-mediated proliferation was blocked by Frizzled-4 extracellular domain. Wnt5a expression enhanced capillary-like network formation, whereas reduction of Wnt5a expression decreased network formation. Reduced Wnt5a expression inhibited endothelial cell migration. Screening for Wnt5a-regulated genes in cultured endothelial cells identified several encoding angiogenic regulators, including matrix metalloproteinase-1, an interstitial collagenase, and Tie-2, a receptor for angiopoietins. Thus, Wnt5a acts through noncanonical Wnt signaling to promote angiogenesis.  相似文献   

16.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a ligand were studied using real-time RT-PCR and immunostaining. Statistically significant up-regulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.  相似文献   

17.
18.
Jessen JR  Solnica-Krezel L 《Cell》2005,120(6):736-737
In this issue of Cell, the Heasman group implicates Wnt11 as a component of the canonical Wnt signaling pathway that specifies Xenopus laevis axis formation (Tao et al., 2005). This important work not only identifies a long-sought-after dorsalizing factor but also highlights the pivotal role of extracellular cofactors in specifying the activation of either canonical or noncanonical Wnt pathways.  相似文献   

19.
When Wnts antagonize Wnts   总被引:7,自引:0,他引:7  
Secreted Wnt ligands appear to activate a variety of signaling pathways. Two papers in this issue now present genetic evidence that "noncanonical" Wnt signaling inhibits the "canonical" Wnt/beta-catenin pathway. Westfall et al. (2003a) show that zebrafish embryos lacking maternal Wnt-5 function are dorsalized due to ectopic activation of beta-catenin, whereas Topol et al. (2003) report that chondrogenesis in the distal mouse limb bud depends on inhibition of Wnt/beta-catenin signaling by a paralogue of Wnt-5. These studies present the first genetic confirmation of the previous hypothesis that vertebrate Wnt signaling pathways can act in an antagonistic manner.  相似文献   

20.
Wnt signaling regulates a variety of developmental processes in animals. Although the beta-catenin-dependent (canonical) pathway is known to control cell fate, a similar role for noncanonical Wnt signaling has not been established in mammals. Moreover, the intracellular cascades for noncanonical Wnt signaling remain to be elucidated. Here, we delineate a pathway in which Wnt3a signals through the Galpha(q/11) subunits of G proteins to activate phosphatidylinositol signaling and PKCdelta in the murine ST2 cells. Galpha(q/11)-PKCdelta signaling is required for Wnt3a-induced osteoblastogenesis in these cells, and PKCdelta homozygous mutant mice exhibit a deficit in embryonic bone formation. Furthermore, Wnt7b, expressed by osteogenic cells in vivo, induces osteoblast differentiation in vitro via the PKCdelta-mediated pathway; ablation of Wnt7b in skeletal progenitors results in less bone in the mouse embryo. Together, these results reveal a Wnt-dependent osteogenic mechanism, and they provide a potential target pathway for designing therapeutics to promote bone formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号