首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are homooligomeric, with native quaternary structure required for maximal enzyme activity. In this study, we mutated lysine 79 in human ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). The residue corresponding to lysine 79 in NTPDase3 is conserved in all known cell surface membrane NTPDases (NTPDase1, 2, 3, and 8), but not in the soluble, monomeric NTPDases (NTPDase5 and 6), or in the intracellular, two transmembrane NTPDases (NTPDase4 and 7). This conserved lysine is located between apyrase conserved region 1 (ACR1) and an invariant glycosylation site (N81), in a region previously hypothesized to be important for NTPDase3 oligomeric structure. This lysine residue was mutated to several different amino acids, and all mutants displayed substantially decreased nucleotidase activities. A basic amino acid at this position was found to be important for the increase of nucleotidase activity observed after treatment with the lectin, concanavalin A. After solubilization with Triton X-100, mutants showed little or no decrease in activity, unlike the wild-type enzyme, suggesting that the lysine at this position may be important for maintaining proper folding and for stabilizing the quaternary structure. However, mutation at this site did not result in global changes in tertiary or quaternary structure as measured by Cibacron blue binding, chemical cross linking, and native gel electrophoretic analysis, leaving open the possibility of other mechanisms by which mutation of this conserved lysine residue might decrease enzyme activity.  相似文献   

2.
Overexpression of NTPDases leads to a number of pathological situations such as thrombosis, and cancer. Thus, effective inhibitors are required to combat these pathological situations. Different classes of NTPDase inhibitors are reported so far including nucleotides and their derivatives, sulfonated dyes such as reactive blue 2, suramin and its derivatives, and polyoxomatalates (POMs). Suramin is a well-known and potent NTPDase inhibitor, nonetheless, a range of side effects are also associated with it. Reactive blue 2 also had non-specific side effects that become apparent at high concentrations. In addition, most of the NTPDase inhibitors are high molecular weight compounds, always required tedious chemical steps to synthesize. Hence, there is still need to explore novel, low molecular weight, easy to synthesize, and potent NTPDase inhibitors.Keeping in mind the known NTPDase inhibitors with imine functionality and nitrogen heterocycles, Schiff bases of tryptamine, 126, were synthesized and characterized by spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C NMR. All the synthetic compounds were evaluated for the inhibitory avidity against activities of three major isoforms of NTPDases: NTPDase-1, NTPDase-3, and NTPDase-8. Cumulatively, eighteen compounds were found to show potent inhibition (Ki = 0.0200–0.350 μM) of NTPDase-1, twelve (Ki = 0.071–1.060 μM) of NTPDase-3, and fifteen compounds inhibited (Ki = 0.0700–4.03 μM) NTPDase-8 activity. As a comparison, the Kis of the standard inhibitor suramin were 1.260 ± 0.007, 6.39 ± 0.89 and 1.180 ± 0.002 μM, respectively. Kinetic studies were performed on lead compounds (6, 5, and 21) with human (h-) NTPDase-1, -3, and -8, and Lineweaver-Burk plot analysis showed that they were all competitive inhibitors. In silico study was conducted on compound 6 that showed the highest level of inhibition of NTPDase-1 to understand the binding mode in the active site of the enzyme.  相似文献   

3.
A capillary electrophoresis (CE) method for the characterization of recombinant NTPDases 1, 2, and 3, and for assaying NTPDase inhibitors has been developed performing the enzymatic reaction within the capillary. After hydrodynamic injection of plugs of substrate solution with or without inhibitor in reaction buffer, followed by a suspension of an enzyme-containing membrane preparation, and subsequent injection of another plug of substrate solution with or without inhibitor, the reaction took place close to the capillary inlet. After 5 min, the electrophoretic separation of the reaction products was initiated by applying a constant current of −60 μA. The method employing a polyacrylamide-coated capillary and reverse polarity mode provided baseline resolution of substrates and products within a short separation time of less than 7 min. A 50 mM phosphate buffer (pH 6.5) was used for the separations and the products were detected by their UV absorbance at 210 nm. The Michaelis–Menten constants (Km) for the recombinant rat NTPDases 1, 2, and 3 obtained with this method were consistent with previously reported data. The inhibition studies revealed pronounced differences in the potency of reactive blue 2, pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), suramin, and N6-diethyl-β,γ-dibromomethylene-ATP (ARL67156) towards the NTPDase isoforms. Notably, ARL67156 does not inhibit all NTPDases, having only a minor inhibitory effect on NTPDase2. Dipyridamole is not an inhibitor of the NTPDase isoforms investigated. The new method is fast and accurate, it requires only tiny amounts of material (nanoliter scale), no sample pretreatment and can be fully automated; thus it is clearly superior to the current standard methods.  相似文献   

4.
Nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) is a cell surface, membrane-bound enzyme that hydrolyzes extracellular nucleotides, thereby modulating purinergic signaling. An alternatively spliced variant of NTPDase3 was obtained and analyzed. This alternatively spliced variant, termed "NTPDase3beta", is produced through the use of an alternative terminal exon (exon 11) in place of the terminal exon (exon 12) in the full-length NTPDase3, now termed "NTPDase3alpha". This results in an expressed protein lacking the C-terminal cytoplasmic sequence, the C-terminal transmembrane helix, and apyrase conserved region 5. The cDNA encoding this truncated splice variant was detected in a human lung library by PCR. Like the full-length NTPDase3alpha, the alternatively spliced NTPDase3beta was expressed in COS cells after transfection, but only the full-length NTPDase3alpha is enzymatically active and properly trafficked to the plasma membrane. However, when the truncated NTPDase3beta was co-transfected with full-length NTPDase3alpha, there was a significant reduction in the amount of NTPDase3alpha that was properly processed and trafficked to the plasma membrane as active enzyme, indicating that the truncated form interferes with normal biosynthetic processing of the full-length enzyme. This suggests a role for the NTPDase3beta variant in the regulation of NTPDase3 nucleotidase activity, and therefore the control of purinergic signaling, in those cells and tissues expressing both NTPDase3alpha and NTPDase3beta.  相似文献   

5.
Bacterial cytidine monophosphate (CMP) kinases are characterised by an insert enlarging their CMP binding domain, and by their particular substrate specificity. Thus, both CMP and 2'-deoxy-CMP (dCMP) are good phosphate acceptors for the CMP kinase from Escherichia coli (E. coli CMPK), whereas eukaryotic UMP/CMP kinases phosphorylate the deoxynucleotides with very low efficiency. Four crystal structures of E. coli CMPK complexed with nucleoside monophosphates differing in their sugar moiety were solved. Both structures with CMP or dCMP show interactions with the pentose that were not described so far. These interactions are lost with the poorer substrates AraCMP and 2',3'-dideoxy-CMP. Comparison of all four structures shows that the pentose hydroxyls are involved in ligand-induced movements of enzyme domains. It also gives a structural basis of the mechanism by which either ribose or deoxyribose can be accommodated. In parallel, for the four nucleotides the kinetic results of the wild-type enzyme and of three structure-based variants are presented. The phosphorylation rate is significantly decreased when either of the two pentose interacting residues is mutated. One of these is an arginine that is highly conserved in all known nucleoside monophosphate kinases. In contrast, the other residue, Asp185, is typical of bacterial CMP kinases. It interacts with Ser101, the only residue conserved in all CMP binding domain inserts. Mutating Ser101 reduces CMP phosphorylation only moderately, but dramatically reduces dCMP phosphorylation. This is the first experimental evidence of a catalytic role involving the characteristic insert of bacterial CMP kinases. Furthermore, this role concerns only dCMP phosphorylation, a feature of this family of enzymes.  相似文献   

6.
We describe a model for the three-dimensional structure of E. coli serine hydroxymethyltransferase based on its sequence homology with other PLP enzymes of the alpha-family and whose tertiary structures are known. The model suggests that certain amino acid residues at the putative active site of the enzyme can adopt specific roles in the catalytic mechanism. These proposals were supported by analysis of the properties of a number of site-directed mutants. New active site features are also proposed for further experimental testing.  相似文献   

7.
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide (pchlide) to chlorophyllide (chlide) in the biosynthesis of chlorophyll. POR is a peripheral membrane protein that accumulates to high levels in the prolamellar bodies of vascular plant etioplasts and is present at low levels in the thylakoid membranes of developing and mature plastids. Clustered charged-to-alanine scanning mutagenesis of the pea (Pisum sativum L.) POR was carried out and the resulting mutant enzymes analyzed for their ability to catalyze pchlide photoconversion in vivo and to associate properly with thylakoid membrane preparations in vitro. Of 37 mutant enzymes examined, 5 retained wild-type levels of activity, 14 were catalytically inactive, and the remaining 18 exhibited altered levels of function. Several of the mutant enzymes showed temperature- dependent enzymatic activity, being inactive at 32°C, but partially active at 24°C. Mutations in predicted - helical regions of the protein showed the least effect on enzyme activity, whereas mutations in predicted -sheet regions of the protein showed a consistent adverse affect on enzyme function. In the absence of added NADPH, neither wild-type POR nor any of the mutant PORs resisted proteolysis by thermolysin following assembly onto the thylakoid membranes. In contrast, when NADPH was present in the assay mixture, 13 of the 37 mutant PORs examined were found to be resistant to thermolysin upon treatment, suggesting that the mutations did not affect their ability to be properly attached to the thylakoid membrane. In general, the replacement of charged amino acids by alanine in the most N- and C-terminal regions of the mature protein did not significantly affect POR assembly, whereas mutations within the central core of the protein (between residues 86 and 342) were incapable of proper attachment to the thylakoid. Failure to properly associate with the thylakoid membrane in a protease resistant manner was only weakly correlated to loss of catalytic function. These studies are a first step towards defining structural determinants crucial to POR function and intraorganellar localization.  相似文献   

8.
S-adenosylhomocysteine hydrolase (AdoHcyHD) is an ubiquitous enzyme that catalyzes the breakdown of S-adenosylhomocysteine, a powerful inhibitor of most transmethylation reactions, to adenosine and L-homocysteine. AdoHcyHD from the hyperthermophilic archaeon Pyrococcus furiosus (PfAdoHcyHD) was cloned, expressed in Escherichia coli, and purified. The enzyme is thermoactive with an optimum temperature of 95 degrees C, and thermostable retaining 100% residual activity after 1 h at 90 degrees C and showing an apparent melting temperature of 98 degrees C. The enzyme is a homotetramer of 190 kDa and contains four cysteine residues per subunit. Thiol groups are not involved in the catalytic process whereas disulfide bond(s) could be present since incubation with 0.8 M dithiothreitol reduces enzyme activity. Multiple sequence alignment of hyperthermophilic AdoHcyHD reveals the presence of two cysteine residues in the N-terminus of the enzyme conserved only in members of Pyrococcus species, and shows that hyperthermophilic AdoHcyHD lack eight C-terminal residues, thought to be important for structural and functional properties of the eukaryotic enzyme. The homology-modeled structure of PfAdoHcyHD shows that Trp220, Tyr181, Tyr184, and Leu185 of each subunit and Ile244 from a different subunit form a network of hydrophobic and aromatic interactions in the central channel formed at the subunits interface. These contacts partially replace the interactions of the C-terminal tail of the eukaryotic enzyme required for tetramer stability. Moreover, Cys221 and Lys245 substitute for Thr430 and Lys426, respectively, of the human enzyme in NAD-binding. Interestingly, all these residues are fairly well conserved in hyperthermophilic AdoHcyHDs but not in mesophilic ones, thus suggesting a common adaptation mechanism at high temperatures.  相似文献   

9.
Summary According to the multiple alignment of various dihydrolipoamide dehydrogenases (E3s) sequences, three human mutant E3s of the conserved residues in the center domain, N286D, N286Q, and D320N were created, over-expressed and purified. We characterized these mutants to investigate the reaction mechanism of human dihydrolipoamide dehydrogenases. The specific activities of N286D, N286Q, and D320N are 30.84%, 24.57% and 48.60% to that of the wild-type E3 respectively. The FAD content analysis indicated that these mutant E3s about 96.0%, 99.4% and 82.7% of FAD content compared to that of wild-type E3 respectively. The molecular weight analysis showed that these three mutant proteins form the dimer. Kinetic’s data demonstrated that the Kcat of both forward and reverse reactions of these mutant proteins were decreased. These results suggest that N286 and D320 play a role in the catalytic function of the E3.  相似文献   

10.
  1. Download : Download high-res image (282KB)
  2. Download : Download full-size image
  相似文献   

11.
Several methods for the chemical synthesis of gamma-32P-labeled and unlabeled nucleoside 5(')-triphosphates and thiamine triphosphate (ThTP) have been described. They often proved unsatisfactory because of low yield, requirement for anhydrous solvents, procedures involving several steps or insufficient specific radioactivity of the labeled triphosphate. In the method described here, all these drawbacks are avoided. The synthesis of [gamma-32P]ThTP was carried out in one step, using 1,3-dicyclohexyl carbodiimide as condensing agent for thiamine diphosphate and phosphoric acid in a dimethyl sulfoxide/pyridine solvent mixture. Anhydrous solvents were not required and the yield reached 90%. After purification, [gamma-32P]ThTP had a specific radioactivity of 11Ci/mmol and was suitable for protein phosphorylation. The method can also be used for the synthesis of [gamma-32P]ATP of the desired specific radioactivity. It can easily be applied to the synthesis of unlabeled ThTP or ribo- and deoxyribonucleoside 5(')-triphosphates. In the latter case, inexpensive 5(')-monophosphate precursors can be used as reactants in a 20-fold excess of phosphoric acid. Deoxyribonucleoside 5(')-triphosphates were obtained in 6h with a yield of at least 70%. After purification, the nucleotides were found to be suitable substrates for Taq polymerase during polymerase chain reaction cycling. Our method can easily be scaled up for industrial synthesis of a variety of labeled and unlabeled triphosphoric derivatives from their mono- or diphosphate precursors.  相似文献   

12.
By SDS-polyacrylamide gel electrophoresis, mitochondrial proteins having covalently-bound flavin were analyzed. Mitochondria were prepared from the liver of rat injected with radioactive riboflavin. Radioactivity was found to be associated with four protein components. Their subunit molecular weights were 91,000, 72,000, 60,000 and 44,000. The first two components exhibited yellowish fluorescence on a gel under ultraviolet illumination. The component of the highest molecular weight seems to be a new protein containing covalently-bound flavin.  相似文献   

13.
The endemic Hawaiian grouper, Epinephelus quernus , is a commercially important species experiencing intense fishing pressure in part of its distributional range. We examined population genetic structure with 398 base pairs of the mitochondrial control region across a large portion of the range of E. quernus , spanning approximately 2000 km of the Hawaiian archipelago. Examination of genetic diversity shows that Gardner Island, situated midway along the island chain, harbours the most diverse haplotypes. F -statistics and Bayesian estimates of migration also reveal the mid-archipelago as genetically differentiated, where the first significant break among adjacent pairs of populations lies between the islands of Nihoa and Necker. Most island comparisons beyond Necker and Gardner to the north-west and among the lower five islands to the south-east show little to no genetic differences. Evidence of historical population expansion across the islands was also found by Maximum Likelihood analyses. The results suggest that management should be structured to reflect the genetic differentiation and diversity in the mid-archipelago, the patterns of which may be associated with oceanic current patterns.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 449–468.  相似文献   

14.
The nervous systems of juvenile and adult Myzostoma cirriferum Leuckart, 1836, were stained with antisera against 5-HT (5-hydroxytryptamine, serotonin), FMRFamide, and acetylated alpha-tubulin in combination with the indirect fluorescence technique and analyzed by confocal laser scanning microscopy. The central nervous system consists of two small cerebral ganglia, connected by a dorsal commissure, a ventral nerve mass, and a pair of long circumesophageal connectives joining the former to the latter. The two neuropil cords within the ventral nerve mass curve outward and are joined to one another anteriorly and posteriorly. They are connected by 12 commissures, forming a ladder-like system. A single median nerve runs along the midventral axis. In addition to the circumesophageal connectives, 11 peripheral nerves arise from each main cord. The first innervates the anterior body region. The others form five groups of two nerves each, the first and thicker nerve of which is the parapodial nerve, innervating the parapodium and two corresponding cirri. Except for those in the most posterior group, the second nerves innervate the lateral organs and the body periphery. Serotonergic perikarya are arranged in six more or less distinct clusters, the first lying in front of and the other five between the main nerve cords. The distribution pattern of the FMRFamidergic perikarya is less clear and the somata lie between and outside the cords. One pair of dorsolateral longitudinal nerves was visualized by tubulin staining. Peripheral nerves and the commissures, in particular, demonstrate a segmental organization of the nervous system of M. cirriferum. Furthermore, their arrangement indicates that the body consists of six segments, the first of which is identifiable only by the first pair of peripheral nerves, the first two commissures, and the anteriormost ventral ganglion. The nervous system M. cirriferum thus exhibits several structures also found in the basic plan of the polychaete nervous system.  相似文献   

15.
A reliable model of tobacco acetohydroxy acid synthase (AHAS) was obtained by homology modeling based on a yeast AHAS X-ray structure using the Swiss-Model server. Conserved residues at the dimer interface were identified, of which the functional roles of four residues, namely H142, E143, M489, and M542, were determined by site-directed mutagenesis. Eight mutants were successfully generated and purified, five of which (H142T, M489V, M542C, M542I, and M542V) were found to be inactive under various assay conditions. The H142K mutant was moderately altered in all kinetic parameters to a similar extent. In addition, the mutant was more thermo-labile than wild type enzyme. The E143A mutant increased the Km value more than 20-fold while other parameters were not significantly changed. All mutations carried out on residue M542 inactivated the enzyme. Though showing a single band on SDS-PAGE, the M542C mutant lost its native tertiary structure and was aggregated. Except M542C, each of the other mutants showed a secondary structure similar to that of wild type enzyme. Although all the inactive mutants were able to bind FAD, the mutants M489V and M542C showed a very low affinity for FAD. None of the active mutants constructed was strongly resistant to three tested herbicides. Taken together, the results suggest that the residues of H142, E143, M489, and M542 are essential for catalytic activity. Furthermore, it seems that H142 residue is involved in stabilizing the dimer interaction, while E143 residue may be involved in binding with substrate pyruvate. The data from the site-directed mutagenesis imply that the constructed homology model of tobacco AHAS is realistic.  相似文献   

16.
The ATPase or ITPase reaction and ATP- or ITP-induced superprecipitation were studied as a function of the ATP or ITP concentration with suspensions of chicken gizzard "native" myosin B or "reconstituted" myosin B (a combination of actin, myosin, and native tropomyosin). The specific aim of the study was to answer the following questions: i) Is the superprecipitation or the ATPase reaction sensitive to calcium ions even at very low concentrations of ATP? ii) Is tropomyosin required for calcium sensitivity? iii) Does "native" myosin B from gizzard muscle behave differently from "reconstituted" myosin B? iv) Does the troponin-tropomyosin complex of rabbit skeletal muscle act as a regulatory protein for the contractile activity of acto-phosphorylated myosin? Considering the overall time course of reaction rather than single values of activity, we found that the answers to the first three questions were negative, while that to the last question was positive. These results favor the kinase-phosphatase mechanism of calcium regulation rather than the leiotonin mechanism.  相似文献   

17.
Aim To elucidate the historical phylogeography of the dusky pipefish (Syngnathus floridae) in the North American Atlantic and Gulf of Mexico ocean basins. Location Southern Atlantic Ocean and northern Gulf of Mexico within the continental United States. Methods A 394‐bp fragment of the mitochondrial cytochrome b gene and a 235‐bp fragment of the mitochondrial control region were analysed from individuals from 10 locations. Phylogenetic reconstruction, haplotype network, mismatch distributions and analysis of molecular variance were used to infer population structure between ocean basins and time from population expansion within ocean basins. Six microsatellite loci were also analysed to estimate population structure and gene flow among five populations using genetic distance methods (FST, Nei’s genetic distance), isolation by distance (Mantel’s test), coalescent‐based estimates of genetic diversity and migration patterns, Bayesian cluster analysis and bottleneck simulations. Results Mitochondrial analyses revealed significant structuring between ocean basins in both cytochrome b (ΦST = 0.361, P < 0.0001; ΦCT = 0.312, P < 0.02) and control region (ΦST = 0.166, P < 0.0001; ΦCT = 0.128, P < 0.03) sequences. However, phylogenetic reconstructions failed to show reciprocal monophyly in populations between ocean basins. Microsatellite analyses revealed significant population substructuring between all locations sampled except for the two locations that were in closest proximity to each other (global FST value = 0.026). Bayesian analysis of microsatellite data also revealed significant population structuring between ocean basins. Coalescent‐based analyses of microsatellite data revealed low migration rates among all sites. Mismatch distribution analysis of mitochondrial loci supports a sudden population expansion in both ocean basins in the late Pleistocene, with the expansion of Atlantic populations occurring more recently. Main conclusions Present‐day populations of S. floridae do not bear the mitochondrial DNA signature of the strong phylogenetic discontinuity between the Atlantic and Gulf coasts of North America commonly observed in other species. Rather, our results suggest that Atlantic and Gulf of Mexico populations of S. floridae are closely related but nevertheless exhibit local and regional population structure. We conclude that the present‐day phylogeographic pattern is the result of a recent population expansion into the Atlantic in the late Pleistocene, and that life‐history traits and ecology may play a pivotal role in shaping the realized geographical distribution pattern of this species.  相似文献   

18.
An improved generalized comparative modeling method, GENECOMP, for the refinement of threading models is developed and validated on the Fischer database of 68 probe-template pairs, a standard benchmark used to evaluate threading approaches. The basic idea is to perform ab initio folding using a lattice protein model, SICHO, near the template provided by the new threading algorithm PROSPECTOR. PROSPECTOR also provides predicted contacts and secondary structure for the template-aligned regions, and possibly for the unaligned regions by garnering additional information from other top-scoring threaded structures. Since the lowest-energy structure generated by the simulations is not necessarily the best structure, we employed two structure-selection protocols: distance geometry and clustering. In general, clustering is found to generate somewhat better quality structures in 38 of 68 cases. When applied to the Fischer database, the protocol does no harm and in a significant number of cases improves upon the initial threading model, sometimes dramatically. The procedure is readily automated and can be implemented on a genomic scale.  相似文献   

19.
Salim A  Bano A  Zaidi ZH 《Proteins》2003,53(2):162-173
Crystallins are recognized as one of the long-lived proteins of lens tissue that might serve as the target for several posttranslational modifications leading to cataract development. We have studied several such sites present in the human gamma-crystallins based either on PROSITE pattern search results or earlier experimental evidences. Their probabilities were examined on the basis of the database analysis of the gamma-crystallin sequences and on their specific locations in the constructed homology models. An N-glycosylation site in human gammaD-crystallin and several phosphorylation sites in all four human gamma-crystallins were predicted by the PROSITE search. Some of these sites were found to be strongly conserved in the gamma-crystallin sequences from different sources. An extensive analysis of these sites was performed to predict their probabilities as potential sites for protein modifications. Glycation studies were performed separately by attaching sugars to the human gammaB-crystallin model, and the effect of binding was analyzed. The studies showed that the major effect of alphaD-glucose (alphaD-G) and alphaD-glucose-6-phosphate (alphaD-G6P) binding was the disruption of charges not only at the surface but also within the molecule. Only a minor alteration in the distances of sulfhydryl groups of cysteines and on their positions in the three-dimensional models were observed, leading us to assume that glycation alone is not responsible for intra- and intermolecular disulfide bond formation.  相似文献   

20.
Indarte M  Madura JD  Surratt CK 《Proteins》2008,70(3):1033-1046
Pharmacological and behavioral studies indicate that binding of cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for initiating the euphoria and addiction associated with these drugs. The lack of an X-ray crystal structure for the DAT or any other member of the neurotransmitter:sodium symporter (NSS) family has hindered understanding of psychostimulant recognition at the atomic level; structural information has been obtained largely from mutagenesis and biophysical studies. The recent publication of a crystal structure for the bacterial leucine transporter LeuT(Aa), a distantly related NSS family homolog, provides for the first time a template for three-dimensional comparative modeling of NSS proteins. A novel computational modeling approach using the capabilities of the Molecular Operating Environment program MOE 2005.06 in conjunction with other comparative modeling servers generated the LeuT(Aa)-directed DAT model. Probable dopamine and amphetamine binding sites were identified within the DAT model using multiple docking approaches. Binding sites for the substrate ligands (dopamine and amphetamine) overlapped substantially with the analogous region of the LeuT(Aa) crystal structure for the substrate leucine. The docking predictions implicated DAT side chains known to be critical for high affinity ligand binding and suggest novel mutagenesis targets in elucidating discrete substrate and inhibitor binding sites. The DAT model may guide DAT ligand QSAR studies, and rational design of novel DAT-binding therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号