首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil microbial toxicity tests are seldom used in ecological risk assessments or in the development of regulatory criteria in the U.S. The primary reason is the lack of an explicit connection between these tests and assessment end-points. Soil microorganisms have three potential roles with respect to ecological assessment endpoints: properties of microbial communities may be end-points; microbial responses may be used to estimate effects on plant production; and microbial responses may be used as surrogates for responses of higher organisms. Rates of microbial processes are important to ecosystem function, and thus should be valued by regulatory agencies. However, the definition of the microbial assessment endpoint is often an impediment to its use in risk assessment. Decreases in rates are not always undesirable. Processes in a nutrient cycle are particularly difficult to define as endpoints, because what constitutes an adverse effect on a process is dependent on the rates of others. Microbial tests may be used as evidence in an assessment of plant production, but the dependence of plants on microbial processes is rarely considered. As assessment endpoints are better defined in the future, microbial ecologists and toxicologists should be provided with more direction for developing appropriate microbial tests.  相似文献   

2.
3.
4.
Species diversity and the structure of microbial communities in soils are thought to be a function of the cumulative selective pressures within the local environment. Shifts in microbial community structure, as a result of metal stress, may have lasting negative effects on soil ecosystem dynamics if critical microbial community functions are compromised. Three soils in the vicinity of a copper smelter, previously contaminated with background, low and high levels of aerially deposited metals, were amended with metal-salts to determine the potential for metal contamination to shape the structural and functional diversity of microbial communities in soils. We hypothesized that the microbial communities native to the three soils would initially be unique to each site, but would converge on a microbial community with similar structure and function, as a result of metal stress. Initially, the three different sites supported microbial communities with unique structural and functional diversity, and the nonimpacted site supported inherently higher levels of microbial activity and biomass, relative to the metal-contaminated sites. Amendment of the soils with metal-salts resulted in a decrease in microbial activity and biomass, as well as shifts in microbial community structure and function at each site. Soil microbial communities from each site were also observed to be sensitive to changes in soil pH as a result of metal-salt amendment; however, the magnitude of these pH-associated effects varied between soils. Microbial communities from each site did not converge on a structurally or functionally similar community following metal-salt amendment, indicating that other factors may be equally important in shaping microbial communities in soils. Among these factors, soil physiochemical parameters like organic matter and soil pH, which can both influence the bioavailability and toxicity of metals in soils, may be critical.  相似文献   

5.
Ecosystem degradation is a major environmental threat. Beyond conservation, restoration of degraded ecosystems is a prerequisite to reinstate their ability to provide essential services and benefits. Most of the restoration efforts focus on aboveground restoration, that is, plants, under the assumption that establishment of plant species will reestablish the faunal and microbial species. While this may be true for some cases, it is not a general rule. Reestablishment of microbial communities by dedicated efforts is also necessary for successful restoration, as cycling of essential nutrients for plant growth and decomposition of organic matter is dependent on them. The role of microbial fertilizers and efficient organisms used in agriculture needs to be explored in restoration. Testing of symbiotic interactions between potential plant growth-promoting Rhizobacteria and plants native to a degraded ecosystem can be conducted and utilized for successful establishment of plant species. However, utmost care must be taken while introducing new microbial species or non-native plant species to an area, as they can adversely affect the resident microbial community. Techniques like phospholipid fatty-acid analysis can be used for taxonomic identification of large microbial groups in non-degraded reference ecosystems before introducing microbial species into a degraded ecosystem. For use of microbes in restoration, more studies on microbe-plant interactions need to be conducted. For use of Soil Microbial Community (SMC) as indicators of restoration, their role and function in the ecology of the area need to be elucidated by employing all the available techniques.  相似文献   

6.
Microbial food chains and food webs   总被引:4,自引:0,他引:4  
Mathematical models for simple microbial food chains and food webs in continuous culture are developed and analyzed. A model for competition of two microbial species for a single scarce resource is also presented as a degenerate case of the food web model. Two models for food chains are developed. The first is based on a model of microbial growth (Monod's) that is widely mentioned and used at the present time. The second is based on a generalization of that model that recent experimental results on microbial food chains seem to require. Experimental data for microbial food webs are almost entirely lacking but a tentative model having what are felt to be the right properties is developed and analyzed. The results obtained from these models seem to be consistent in most circumstances with current ecological thinking on community dynamics.  相似文献   

7.
3 次连续重复提取DNA 能较好反映土壤微生物丰度   总被引:6,自引:1,他引:6  
【目的】研究同一个土壤需要反复提取几次才能在最大程度上反映土壤微生物的丰度,探讨风干土壤代替新鲜土壤用于微生物丰度研究的可行性。【方法】针对两种理化性质具有较大差异的旱地和稻田新鲜土壤及其风干土壤,分别对土壤微生物进行5次连续裂解提取DNA。通过实时荧光定量PCR技术分析连续反复提取对土壤古菌和细菌16S rRNA gene数量、氨氧化古菌和细菌功能基因amoA数量的影响。【结果】3次连续提取DNA占5次提取DNA总量的76%以上,氨氧化古菌、氨氧化细菌、古菌和细菌4类微生物的3次连续提取最低回收率为77.5%;与新鲜土壤相比,风干处理导致氨氧化古菌、氨氧化细菌、古菌、细菌的数量分别降低84.3%、81.2%、12.5%和90.3%,然而,2种土壤风干过程中主要微生物类群的数量变化规律基本一致,表明土壤微生物对风干处理的响应可能受土壤类型的影响较小。【结论】土壤微生物连续3次裂解能较好反映微生物丰度。与新鲜土壤相比,风干过程显著降低了土壤微生物丰度,然而,通过风干土壤中微生物丰度的变化趋势反映新鲜土壤中微生物数量变化规律具有一定的可行性。  相似文献   

8.
不同施肥制度甘蔗地土壤养分对微生物群落结构的影响   总被引:3,自引:0,他引:3  
刘晓利  樊剑波  蒋瑀霁 《生态学报》2014,34(18):5242-5248
以广西红壤长期定位施肥甘蔗地为研究对象,探讨了不同施肥措施甘蔗地土壤微生物群落特征以及土壤养分对微生物群落结构的影响。结果表明,长期优化施肥可以提高土壤微生物多样性,不施肥土壤微生物生长得到显著抑制。土壤全氮、全钾、速效钾含量与微生物群落结构密切相关,可采取适当增加钾肥用量以增加微生物多样性,提高土壤肥力。土壤中磷素含量与微生物群落结构无显著相关,红壤甘蔗地中磷肥用量应适当,不宜过量施用。  相似文献   

9.
Microbial biosensors: a review   总被引:1,自引:0,他引:1  
Su L  Jia W  Hou C  Lei Y 《Biosensors & bioelectronics》2011,26(5):1788-1799
A microbial biosensor is an analytical device which integrates microorganism(s) with a physical transducer to generate a measurable signal proportional to the concentration of analytes. In recent years, a large number of microbial biosensors have been developed for environmental, food, and biomedical applications. Starting with the discussion of various sensing techniques commonly used in microbial biosensing, this review article concentrates on the summarization of the recent progress in the fabrication and application of microbial biosensors based on amperometry, potentiometry, conductometry, voltammetry, microbial fuel cell, fluorescence, bioluminescence, and colorimetry, respectively. Prospective strategies for the design of future microbial biosensors will also be discussed.  相似文献   

10.
实时荧光定量PCR及其在微生物生态学中的应用   总被引:15,自引:0,他引:15  
张晶  张惠文  张成刚 《生态学报》2005,25(6):1445-1450
定量描述微生物群落的组成,在微生物生态学的许多研究领域都是非常重要的。然而由于可培养技术的局限性,定量描述微生物群落成为比较困难的事情。最近包括PCR技术在内的分子生物学技术为人们提供了有力的工具,使对微生物群落的分布、丰度等有了进一步的了解。实时荧光定量PCR技术作为核酸定量检测技术,自从发明以来在微生物生态学研究中逐渐得到了广泛的应用。从微生物生态学角度,综述了实时荧光定量PCR技术的原理、发展、优缺点及其在微生物生态学研究中的应用与研究进展,并探讨了实时荧光定量PCR技术的发展和应用前景。  相似文献   

11.
提高微生物可培养性的方法和措施   总被引:25,自引:3,他引:25  
目前自然界中只有极少部分微生物能够得到培养,严重阻碍了对微生物生命活动规律的研究和微生物资源的开发。改进传统培养方法,采用新型培养技术,提高微生物可培养性,大量培养自然界中存在的微生物,从而更全面、准确地了解微生物细胞的生命规律、获悉微生物群落中各种微生物之间的动态相互作用和相互协调的规律,对环境微生物工艺进行准确地设计、精细地调控和高效地利用。简要介绍了微生物不可培养的原因,系统总结了有关提高微生物可培养性方法的最新研究进展,提出研究中存在的问题,并阐述了模拟自然环境条件、强调微生物相互关系是提高微生物可培养性的关键。  相似文献   

12.
土壤微生物多样性研究方法   总被引:35,自引:8,他引:35  
概述了研究土壤微生物多样性的主要方法.传统上,土壤微生物群落的分析依赖于培养技术,使用各种培养基最大限度地培养各种微生物群体,但仍只能培养和分离出一小部分土壤微生物群落.使用Biolog分析、磷脂脂肪酸分析和核酸分析等方法,可研究和表征那些现在还不能够被培养的土壤微生物。从而获取关于土壤微生物群落多样性的更多和更完整的信息.  相似文献   

13.
The use of soil microorganisms in ecological risk assessment is hampered by an unclear dose-response relationship for most contaminants. Establishing dose-response curves for soil microbial communities requires that one have a clear estimate of exposure at the site of toxic action and a response free of confounding environmental factors. It is not clear what methods can estimate toxicant dose at the site of toxic action or determine microbial response to a toxicant. Pollution-induced community tolerance (PICT) is one possible estimate of microbial toxicant exposure. The PICT hypothesis is that the tolerance of a microbial community is proportional to the in situ dose. This method automatically corrects for differences due to differences in soil physical-chemical variables between samples. Various components of the soil nitrogen cycle can act as microbial bioindicators of toxicant impacts. Estimating denitrifica-tion activity presents a number of advantages over other components of the nitrogen cycle. Denitrifying bacteria come from a diversity of habitats, can be autotrophic or heterotrophic, and denitrification is a well-defined enzymatic system, which allows the use of molecular tools. Determining denitrification may be a good estimate of effects of toxicants on microbial communities. However, given the state of our ignorance regarding soil microbial community structure and function, redundant estimates of exposure and effect are necessary to adequately characterize the response of microbial communities to toxicants.  相似文献   

14.
15.
In recent works, microbial consortia consisting of various bacteria and fungi exhibited a biodegradation performance superior to single microbial strains. A highly efficient biodegradation of synthetic dyes, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other organic pollutants can be achieved by mixed microbial cultures that combine degradative enzyme activities inherent to individual consortium members. This review summarizes biodegradation results obtained with defined microbial cocultures and real microbial consortia. The necessity of using a proper strategy for the microbial consortium development and optimization was clearly demonstrated. Molecular genetic and proteomic techniques have revolutionized the study of microbial communities, and techniques such as the denaturing gradient gel electrophoresis, rRNA sequencing, and metaproteomics have been used to identify consortium members and to study microbial population dynamics. These analyses could help to further enhance and optimize the natural activities of mixed microbial cultures.  相似文献   

16.
Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs), it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209) would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC) and open-circuit microbial fuel cell (o-MFC) systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes.  相似文献   

17.
We present a formal model of Janzen''s influential theory that competition for resources between microbes and vertebrates causes microbes to be selected to make these resources unpalatable to vertebrates. That is, fruit rots, seeds mould and meat spoils, in part, because microbes gain a selective advantage if they can alter the properties of these resources to avoid losing the resources to vertebrate consumers. A previous model had failed to find circumstances in which such a costly spoilage trait could flourish; here, we present a simple analytic model of a general situation where costly microbial spoilage is selected and persists. We argue that the key difference between the two models lies in their treatments of microbial dispersal. If microbial dispersal is sufficiently spatially constrained that different resource items can have differing microbial communities, then spoilage will be selected; however, if microbial dispersal has a strong homogenizing effect on the microbial community then spoilage will not be selected. We suspect that both regimes will exist in the natural world, and suggest how future empirical studies could explore the influence of microbial dispersal on spoilage.  相似文献   

18.
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function.  相似文献   

19.
液滴微流控由于可以快速生成大量微液滴,并实现单个液滴独立的控制,每个液滴都可以作为独立的单元进行微生物培养,因此在微生物的高通量培养方面具有独特的应用优势.然而现有研究多停留在实验室搭建和使用阶段,存在操作要求高、影响因素多、缺乏自动化集成技术等关键问题,制约了液滴微流控技术在微生物研究中的应用.文中以解决液滴微流控技...  相似文献   

20.
The cultivation of legumes shows promise for the development of sustainable agriculture, but yield instability remains one of the main obstacles for its adoption. Here, we tested whether the yield stability (i.e., resistance and resilience) of pea plants subjected to drought could be enhanced by soil microbial diversity. We used a dilution approach to manipulate the microbial diversity, with a genotype approach to distinguish the effect of symbionts from that of microbial diversity as a whole. We investigated the physiology of plants in response to drought when grown on a soil containing high or low level of microbial diversity. Plants grown under high microbial diversity displayed higher productivity and greater resilience after drought. Yield losses were mitigated by 15% on average in the presence of high soil microbial diversity at sowing. Our study provides proof of concept that the soil microbial community as a whole plays a key role for yield stability after drought even in plant species living in relationships with microbial symbionts. These results emphasize the need to restore soil biodiversity for sustainable crop management and climate change adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号