共查询到20条相似文献,搜索用时 0 毫秒
1.
Radioprobing of DNA: distribution of DNA breaks produced by decay of 125I incorporated into a triplex-forming oligonucleotide correlates with geometry of the triplex.
下载免费PDF全文

The distribution of breaks produced in both strands of a DNA duplex by the decay of 125I carried by a triplex-forming DNA oligonucleotide was studied at single nucleotide resolution. The 125I atom was located in the C5 position of a single cytosine residue of an oligonucleotide designed to form a triple helix with the target sequence duplex. The majority of the breaks (90%) are located within 10 bp around the decay site. The addition of the free radical scavenger DMSO produces an insignificant effect on the yield and distribution of the breaks. These results suggest that the majority of these breaks are produced by the direct action of radiation and are not mediated by diffusible free radicals. The frequency of breaks in the purine strand was two times higher that in the pyrimidine strand. This asymmetry in the yield of breaks correlates with the geometry of this type of triplex; the C5 of the cytosine in the third strand is closer to the sugar-phosphate backbone of the purine strand. Moreover, study of molecular models shows that the yield of breaks at individual bases correlates with distance from the 125I decay site. We suggest the possible use of 125I decay as a probe for the structure of nucleic acids and nucleoprotein complexes. 相似文献
2.
Previously, the kinetics of strand break production by (125)I-labeled m-iodo-p-ethoxyHoechst 33342 ((125)IEH) in supercoiled (SC) plasmid DNA had demonstrated that approximately 1 DSB is produced per (125)I decay both in the presence and absence of the hydroxyl radical scavenger DMSO. In these experiments, an (125)IEH:DNA molar ratio of 42:1 was used. We now hypothesize that this DSB yield (but not the SSB yield) may be an overestimate due to subsequent decays occurring in any of the 41 (125)IEH molecules still bound to nicked (N) DNA. To test our hypothesis, (125)IEH was incubated with SC pUC19 plasmids ((125)IEH:DNA ratio of approximately 3:1) and the SSB and DSB yields were quantified after the decay of (125)I. As predicted, the number of DSBs produced per (125)I decay is one-half that reported previously ( approximately 0.5 compared to approximately 1, +/- DMSO) whereas the number of SSBs ( approximately 3/(125)I decay) is similar to that obtained previously ( approximately 90% are generated by OH radicals). Direct visualization by atomic force microscopy confirms formation of L and N DNA after (125)IEH decays in SC DNA and supports the strand break yields reported. These findings indicate that although SSB production is independent of the number of (125)IEH bound to DNA, the DSB yield can be augmented erroneously by (125)I decays occurring in N DNA. Further analysis indicates that 17% of SSBs and 100% of DSBs take place within the plasmid molecule in which an (125)IEH molecule decays, whereas 83% of SSBs are formed in neighboring plasmid DNA molecules. 相似文献
3.
To elucidate the nature and kinetics of DNA strand breaks caused by low-energy Auger electron emitters, we compared the yields of DNA breaks in supercoiled pUC19 DNA in the presence of the (.)OH scavenger dimethyl sulfoxide (DMSO) after the decay of (125)I (1) in proximity to DNA after minor-groove binding ((125)I-iodoHoechst 33342, (125)IH) and (2) at a distance from DNA ((125)I-iodoantipyrine, (125)IAP). DMSO is efficient at protecting supercoiled plasmid DNA from the decay of (125)I free in solution (dose modification factor, DMF = 59 +/- 4) and less effective when the (125)I decays occur close to DNA (DMF = 3.8 +/- 0.3). This difference is due mainly to the inability of DMSO to protect DNA from the double-strand breaks produced by groove-bound (125)I (DMF = 1.0 +/- 0.2). Additionally, the fragmentation of plasmid DNA beyond the production of single-strand and double-strand breaks that is seen after the decay of (125)IH and not (125)IAP (Kassis et al., Radiat. Res. 151, 167-176, 1999) cannot be modified by DMSO. These results demonstrate that the mechanisms underlying double-strand breaks caused by the decay of (125)IH differ in nature from those caused by the decay of (125)IAP. 相似文献
4.
We labeled the DNA of Chinese hamster lung V79 cells with 125I in the form of iododeoxyuridine and subsequently measured the elution of the DNA through polycarbonate filters at pH 9.6 and pH 7.2. Since decay of incorporated 125I produces predominantly double-strand breaks (DSB) in DNA at a rate close to one DSB per 125I decay, this measurement provides an absolute calibration for the assay of DSBs by neutral filter elution. Neutral elution profiles are not first order with respect to elution time; thus we have examined the relationships between accumulated 125I decays and several functions of retention of DNA on the filter at various times during the elution process. At both pH 9.6 and pH 7.2 there were linear relationships between accumulated decays and certain retention functions. The retention function most closely correlated to 125I decays for both pH values was the logarithm of the ratio of the retention of control DNA to that of 125I-labeled DNA, both evaluated at the 9th fraction (13.5 h of elution). The linear relationship between this ratio and 125I decays allows DSB induction to be determined directly from retention values. The calibration was used to measure DSBs induced by X rays. 相似文献
5.
Pharmacokinetics of (111)In-labeled triplex-forming oligonucleotide targeting human N-myc gene 总被引:3,自引:0,他引:3
The radiolabeled triplex-forming oligonucleotide (TFO) demonstrated the potential for sequence-specific DNA binding and destruction. In this study, by selecting the polypurine-polypyrimidine stretch (2950-2978) in the human N-myc gene as a target, the (111)In-labeled TFO targeting human N-myc gene (N-mycTFO(111)In) was tested for its cellular uptake and nuclear localization in vitro and in vivo. This is because the deregulated N-myc expression is strongly implicated in the pathogenesis of several important human malignancies, including breast carcinoma and neuroblastoma. N-mycTFO(111)In was bound selectively to the N-myc sequence in vitro. The total cellular uptake of TFO after the incubation of various normal and cancer cells with TFO for 24 h was 20-54.8% of the injected dose (%ID), and the nuclear localization was 6.59-30.0%ID, depending on cell lines. The highest cellular uptake was found in the human neuroblastoma SK-N-DZ (54.8%ID), human mammary ductal carcinoma T47-D (54%ID), human acute T cell leukemia Jurkat (54%ID), and multidrug-resistant human breast adenocarcinoma MCF7/TH (49.5%ID). The lowest was in the human normal mammary epithelium MCF10A (20.0%ID). The highest nuclear localization was found in MCF7/TH (30%ID) and SK-N-DZ (28.7%ID). The lowest was in MCF11A (6.59%ID). We next injected TFO into human mammary tumor-xenografted Balb/c nude mice. Tumor targeting of TFO in vivo reached its maximum peak 5 h after the intravenous injection in three types of tumor models. They are 21.0 +/- 3.23%ID per gram of tissue (%ID/g) for MCF7/TH, 7.77 +/- 2.11%ID/g for MCF7, and 4.53 +/- 1.20%ID/g for MCF10A. The TFO blood level decreased from 8.00 +/- 0.90%ID/g 15 min after the injection, to 1.30 +/- 0.30%ID/g after 19 h. The kidney TFO level increased rapidly from 5.93 +/- 0.94%ID/g after 15 min, to 25.1 +/- 5.60%ID/g after 19 h. A high TFO level (19.7-24.5%ID/g) in the liver was maintained until 19 h after the injection. Therefore, we suggest that the (111)In-labeled N-myc-targeting TFO, a promising modality for nanoexplosive gene therapy, could effectively target the nucleus of the multidrug-resistant breast carcinoma MCF7/TH in vitro and in vivo. It has approximately 130 min of half-life of blood TFO. 相似文献
6.
7.
Targeted gene knock in and sequence modulation mediated by a psoralen-linked triplex-forming oligonucleotide 总被引:1,自引:0,他引:1
Majumdar A Muniandy PA Liu J Liu JL Liu ST Cuenoud B Seidman MM 《The Journal of biological chemistry》2008,283(17):11244-11252
Information from exogenous donor DNA can be introduced into the genome via homology-directed repair (HDR) pathways. These pathways are stimulated by double strand breaks and by DNA damage such as interstrand cross-links. We have employed triple helix-forming oligonucleotides linked to psoralen (pso-TFO) to introduce a DNA interstrand cross-link at a specific site in the genome of living mammalian cells. Co-introduction of duplex DNA with target region homology resulted in precise knock in of the donor at frequencies 2-3 orders of magnitude greater than with donor alone. Knock-in was eliminated in cells deficient in ERCC1-XPF, which is involved in recombinational pathways as well as cross-link repair. Separately, single strand oligonucleotide donors (SSO) were co-introduced with the pso-TFO. These were 10-fold more active than the duplex knock-in donor. SSO efficacy was further elevated in cells deficient in ERCC1-XPF, in contrast to the duplex donor. Resected single strand ends have been implicated as critical intermediates in sequence modulation by SSO, as well as duplex donor knock in. We asked whether there would be a competition between the donor species for these ends if both were present with the pso-TFO. The frequency of duplex donor knock in was unaffected by a 100-fold molar excess of the SSO. The same result was obtained when the homing endonuclease I-SceI was used to initiate HDR at the target site. We conclude that the entry of double strand breaks into distinct HDR pathways is controlled by factors other than the nucleic acid partners in those pathways. 相似文献
8.
Facilitation of the cellular uptake of a triplex-forming oligonucleotide by novel polyamine analogues: structure-activity relationships. 总被引:4,自引:0,他引:4
The inefficient uptake of oligodeoxynucleotides, including that of TFO, through the cell membrane is a limiting factor in developing gene therapy approaches for cancer and other diseases. To develop a new strategy for oligonucleotide delivery into the nucleus, we synthesized a series of novel polyamine analogues and examined their effects on the uptake of a 37-mer [32P]-labeled TFO, targeted to the promoter region of c-myc oncogene. We used MCF-7 breast cancer cells to investigate the efficacy of polyamines on the internalization of the TFO. The uptake of TFO was enhanced by complexing it with several unsubstituted polyamine analogues at 0. 1-5 microM concentrations, with up to 6-fold increase in TFO uptake in the presence of a hexamine, 1,21-diamino-4,9,13, 18-tetraazahenicosane (H2N(CH2)(3)NH(CH2)(4)NH(CH2)(3)NH(CH2)(4)NH(CH2)(3)NH(2) or 3-4-3-4-3). TFO uptake increased with the cationicity of the polyamines; however, bis(ethyl) substitution and structural features of the methylene bridging region had significant effects on TFO uptake. The majority of labeled TFO was recovered from the nuclear fraction containing genomic DNA. Electrophoretic mobility shift assay revealed enhanced binding of TFO to a target duplex containing promoter region sequence of c-myc oncogene. Treatment of MCF-7 cells with the TFO complexed with 0.5 microM 3-4-3-4-3 suppressed c-myc mRNA level by 65%, as determined by Northern blot analysis. These data indicate a novel approach to deliver oligodeoxynucleotides to the cell nucleus, and suppress the expression of target genes, and provide new insights into the mechanism of oligonucleotide transport in living cells. 相似文献
9.
Sequence-specific DNA double-strand breaks induced by triplex forming 125I labeled oligonucleotides. 总被引:5,自引:2,他引:5
下载免费PDF全文

A triplex-forming oligonucleotide (TFO) complementary to the polypurine-polypyrimidine region of the nef gene of the Human Immunodeficiency Virus (HIV) was labeled with 125I at the C5 position of a single deoxycytosine residue. Labeled TFO was incubated with a plasmid containing a fragment of the nef gene. Decay of 125I was found to cause double-strand breaks (DSB) within the nef gene upon triplex formation in a sequence specific manner. No DSB were detected after incubation at ionic conditions preventing triplex formation or when TFO was labeled with 32P instead of 125I. Mapping DSB sites with single base resolution showed that they are distributed within 10 bp of a maximum located exactly opposite the position of the [125I] IdC in the TFO. We estimate that on average the amount of DSB produced per decay is close to one. 相似文献
10.
Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers 总被引:7,自引:1,他引:7
We used polypropylenimine dendrimers for delivering a 31 nt triplex-forming oligonucleotide (ODN) in breast, prostate and ovarian cancer cell lines, using 32P-labeled ODN. Dendrimers enhanced the uptake of ODN by ~14-fold in MDA-MB-231 breast cancer cells, compared with control ODN uptake. Dendrimers exerted their effect in a concentration- and molecular weight-dependent manner, with generation 4 (G-4) dendrimer having maximum efficacy. A similar increase in ODN uptake was found with MCF-7 and SK-BR-3 (breast), LNCaP (prostate) and SK-OV-3 (ovarian) cancer cells. The dendrimers had no significant effect on cell viability at concentrations at which maximum ODN uptake occurred. [3H]Thymidine incorporation showed that complexing the ODN with G-4 significantly increased the growth-inhibitory effect of the ODN. Western blot analysis showed a significant 65% reduction of c-myc protein level in ODN–G-4 treated cells compared with that of ODN-treated/control cells. Gel electrophoretic analysis showed that ODN remained intact in cells even after 48 h of treatment. The hydrodynamic radii of nanoparticles formed from ODN in the presence of the dendrimers were in the range of 130–280 nm, as determined by dynamic laser light scattering. Taken together, our results indicate that polypropylenimine dendrimers might be useful vehicles for delivering therapeutic oligonucleotides in cancer cells. 相似文献
11.
12.
Summary Chinese hamster cells (Cl : 1) were labelled with3H-thymidine or125Iododeoxyuridine for 18 h and after 3 h in non-radioactive medium they were stored at 0° C up to 6 h. The number of DNA strand breaks observed after the labelling period (37° C) or after treatment at 0° C was determined using the DNA-unwinding technique.125I-decays in DNA were significantly more efficient than3H-decays in introducing unrepairable DNA strand breaks during the labelling period. 32% of125I-induced and 3% of3H-induced DNA strand breaks were unrepaired after 21 h at 37° C. Comparison between the effects of125I- or 3H-disintegrations in DNA in three different ways shows 7–12 times more pronounced effects for125I-decays. For125I-labelled cells 3–4 DNA strand breaks were found per decay and the corresponding value for3H- labelled cells was 2. 相似文献
13.
Identification of oligonucleotide fragments produced in a strand scission reaction of the d(C-G-C-G-C-G) duplex by bleomycin.
下载免费PDF全文

To elucidate the mechanism of DNA strand scission by bleomycin, a d(C-G-C-G-C-G) duplex was treated with the bleomycin-iron ion complex in the presence of H2O2 and degradation products (1, 2, cytosine and deoxyguanosine 5'-phosphate) were identified. 1 and 2 contain a carboxymethyl group attached to the 3'-terminal phosphoryl group of d(C-Gp) and d(C-G-C-Gp), respectively. These compounds were identified by UV, 1H and 31P NMR spectroscopy and paper electrophoresis. 1 was synthesized from the protected dinucleotide and glycolic acid and the proton NMR spectrum was identical to that of 1 obtained as a degradation product. Thus the oligonucleotide fragments produced by the action of bleomycin on DNA were directly identified and cleavage of the C3'-C4' bond of the sugar residues was proved. 相似文献
14.
L S Yasui K G Hofer 《International journal of radiation biology and related studies in physics, chemistry, and medicine》1986,49(4):601-610
The role of mitochondrial DNA in radiation-induced cell death was determined by selective [125I]iododeoxyuridine (125IUdR) incorporation into exclusively nuclear sites compared to labelling in both nuclear and mitochondrial DNA of Chinese hamster cells. Such selectivity was achieved by using berenil (25 micrograms/ml for 24 h), a drug which inhibits mitochondrial DNA synthesis without affecting incorporation of 125IUdR into nuclear DNA but does not result in reduced clonogenicity or cell cycle perturbations or alteration in the X-ray response of cells. There was no difference in cell killing between cells with nuclear labelling alone compared with nuclear plus mitochondrial labelling. The absence of decays in mitochondrial DNA does not affect the ability of 125I to induce lethal cell damage. The two treatment groups have superimposable curves with a D0 of 96 decays/cell. These findings indicate that mitochondrial DNA is not the most sensitive target for radiation-induced cell death from 125I decay. 相似文献
15.
A mixture of 4 purified proteins at equal concentrations was radiolabelled with [125I] and lactoperoxidase and analysed by SDS-polyacrylamide gel electrophoresis. Bovine serum albumin took up 9 times as much label as ovalbumin or lysozyme and 3.3 times as much as α? chymotrypsinogen A. These results suggest that when applying the [125I]- lactoperoxidase technique to labelling unknown mixtures of proteins, such as may exist on the surfaces of cells, caution should be exercised in interpreting the degree of labelling of particular proteins in terms only of surface abundance or accessibility. 相似文献
16.
A method for coupling bleomycin to oligonucleotides is suggested. The reaction was carried out between the amino group of the spermidine residue of the bleomycin A5 Cu(II)-complex (Cu(II)Blm-RH) and the 5'-phosphate group of the oligonucleotide pd(CCAAACA) (I) activated with a mixture of triphenylphosphine and 2,2'-dipyridyldisulphide in the presence of 4-N,N-dimethylaminopyridine-1-oxide. The resultant compound (Ia) (yield 70%) forms more stable complementary complexes than the parent oligonucleotide (delta Tm = 11 degrees C). When Cu(II) ion was removed from (Ia), compound (Ib) formed which effectively (80%) cleaved pd(TGTTTGGCGAAGGA). Neither pd(TCCTTCG) nor the oligonucleotide tail of the reagent (Ib) were destroyed under the cleavage conditions. Free Blm-RH and bleomycin bound in the reagent (Ib) damage different regions of the target. 相似文献
17.
Chemical and biological consequences of the radioactive decay of iodine-125 in plasmid DNA 总被引:1,自引:0,他引:1
Doubly labeled [U-14C, 5-125I]iododeoxycytidine (IdC) triphosphate was synthesized and incorporated enzymatically into defined positions of the plasmid pBR322. After storage under various conditions, the stable end products were analyzed using radio-GC, radio-HPLC, and electron microscopy. In addition, solutions of 14C-IdC-labeled DNA containing Na125I as an internal radiation source were studied to investigate the influence of internal radiolysis. Transmutation of the covalently bound 125I leads to complete destruction of the labeled nucleotide, giving rise to 14CO2 and 14CO as major products. Fragmentation of the pyrimidine base is independent of solvent and DNA configuration. Internal radiolysis caused by Na125I leads to only minor damage. Electron microscopy studies reveal that decay-induced double strand breaks (dsb) occur both at the site of decay and in areas as far as hundreds of base pairs apart from that site. Number and distribution of the breaks is strongly dependent on solvent and DNA configuration. A direct correlation exists between the extent of fragmentation of the nucleotide and the mean number of dsb. 相似文献
18.
Gene targeted DNA double-strand break induction by (125)I-labeled triplex-forming oligonucleotides is highly mutagenic following repair in human cells.
下载免费PDF全文

A parallel binding motif 16mer triplex-forming oligonucleotide (TFO) complementary to a polypurine-polypyrimidine target region near the 3'-end of the SupF gene of plasmid pSP189 was labeled with [5-(125)I]dCMP at position 15. Following triplex formation and decay accumulation, radiation-induced site-specific double-strand breaks (DSBs) were produced in the pSP189 SupF gene. Bulk damaged DNA and the isolated site-specific DSB-containing DNA were separately transfected into human WI38VA13 cells and allowed to repair prior to recovery and analysis of mutants. Bulk damaged DNA had a relatively low mutation frequency of 2.7 x 10(-3). In contrast, the isolated linear DNA containing site-specific DSBs had an unusually high mutation frequency of 7.9 x 10(-1). This was nearly 300-fold greater than that observed for the bulk damaged DNA mixture, and >1.5 x 10(4)-fold greater than background. The mutation spectra displayed a high proportion of deletion mutants targeted to the(125)I binding position within the SupF gene for both bulk damaged DNA and isolated linear DNA. Both spectra were characterized by complex mutations with mixtures of changes. However, mutations recovered from the linear site-specific DSB-containing DNA presented a much higher proportion of complex deletion mutations. 相似文献
19.
Chinese hamster ovary cells were synchronized at the G1/S-phase boundary of the cell cycle and pulse-labeled for 10 min with 125I-iododeoxyuridine 30 min after entering the S phase. Cell samples were harvested for freezing and 125I-decay accumulation at intervals ranging from 15 to 480 min after termination of labeling. The survival data showed a marked shift from cell killing characteristic of low-LET radiation to that more characteristic of killing by high-LET radiation with increasing intervals between DNA pulse-labeling and decay accumulation. Cells harvested and frozen within 1 h after pulse-labeling yielded a low-LET radiation survival response with a pronounced shoulder and a large D0 of up to 0.9 Gy. With longer chase periods the shoulder and the D0 decreased progressively, and cells harvested 5 h after pulse-labeling or later exhibited a high-LET survival response (D0: 0.13 Gy). Two interpretations for these findings are discussed. (1) If DNA is the sole target for radiation death, the results indicate that DNA maturation increases radiation damage to DNA or reduces damage repair. (2) If radiation cell death involves damage to higher-order structures in the cell nucleus, the findings suggest that newly replicated DNA is not attached to these structures during the initial low-LET period, but 125I starts to induce high-LET radiation effects as labeled DNA segments become associated with the target structure(s). On balance, or data favor the latter interpretation. 相似文献
20.
Lobachevsky, P. N. and Martin, R. F. Iodine-125 Decay in a Synthetic Oligodeoxynucleotide. I. Fragment Size Distribution and Evaluation of Breakage Probability. Incorporation of (125)I-dC into a defined location of a double-stranded oligodeoxynucleotide was used to investigate DNA breaks arising from decay of the Auger electron-emitting isotope. Samples of the oligodeoxynucleotide were also labeled with (32)P at either the 5' or 3' end of either the (125)I-dC-containing (so-called top) or opposite (bottom) strand and incubated in 20 mM phosphate buffer or the same buffer plus 2 M dimethylsulfoxide at 4 degrees C during 18-20 days. The (32)P-end-labeled fragments produced by (125)I decays were separated on denaturing polyacrylamide gels, and the (32)P activity in each fragment was determined by scintillation counting after elution of fragments from the gel. The relative fragment size distributions were then normalized on a per decay basis and converted to a distribution of single-strand break probabilities as a function of distance from the (125)I-dC. The results of three to five experiments for each of eight possible combinations of labels and incubation conditions are presented as a table showing the relative numbers of (32)P counts in different fragments as well as graphs of normalized fragment size distributions and probabilities of breakage. The average numbers of single-strand breaks per (125)I decay are 3. 3 and 3.7 in the top strand and 1.3 and 1.5 in the bottom strand with and without dimethylsulfoxide, respectively. Every (125)I decay event produces a break in the top strand, and breakage of the bottom strand occurs in 75-80% of the events. Thus a double-strand break is produced by (125)I decay with a probability of approximately 0.8. 相似文献