首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
It is now well-established that phosphorylation of the 20,000-dalton light chain of smooth muscle myosin (LC20) is a prerequisite for muscle contraction. However, the relationship between myosin dephosphorylation and muscle relaxation remains controversial. In the present study, we utilized a highly purified catalytic subunit of a type-2, skeletal muscle phosphoprotein phosphatase (protein phosphatase 2A) and a glycerinated smooth muscle preparation to determine if myosin dephosphorylation, in the presence of saturating calcium and calmodulin, would cause relaxation of contracted uterine smooth muscle. Addition of the phosphatase catalytic subunit (0.28 microM) to the muscle bath produced complete relaxation of the muscle. The phosphatase-induced relaxation could be reversed by adding to the muscle bath either purified, thiophosphorylated, chicken gizzard 20,000-dalton myosin light chains or purified, chicken gizzard myosin light chain kinase. Incubation of skinned muscles with adenosine 5'-O-(thiotriphosphate) prior to the addition of phosphatase resulted in the incorporation of 0.93 mol of PO4/mol of LC20 and prevented phosphatase-induced relaxation. Under all of the above conditions, changes in steady-state isometric force were associated with parallel changes in myosin light chain phosphorylation over a range of phosphorylation extending from 0.01 to 0.97 mol of PO4/mol of LC20. We found no evidence that dephosphorylation of contracted uterine smooth muscles, in the presence of calcium and calmodulin, could produce a latch-state where isometric force was maintained in the absence of myosin light chain phosphorylation. These results show that phosphorylation or dephosphorylation of the 20,000-dalton myosin light chain is adequate for the regulation of contraction or relaxation, respectively, in glycerinated uterine smooth muscle.  相似文献   

2.
Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively.  相似文献   

3.
Myosin light chain phosphorylation in aortic smooth muscle homogenate reached a maximal level of 0.75 mol phosphate/mol light chain, and then declined. Addition of okadaic acid led to a sustained phosphorylation level of 1.7 mol/mol. In the absence of okadaic acid, phosphorylation was predominantly due to myosin light chain kinase, whereas in the presence of okadaic acid both myosin light chain kinase and protein kinase C were involved in phosphorylation. Okadaic acid inhibited dephosphorylation of the distinct sites in LC phosphorylated by either myosin light chain kinase or protein kinase C, suggesting that it exerts its effect through inhibition of myosin light chain phosphatases present in aortic homogenate.  相似文献   

4.
At relatively high concentrations of myosin light chain kinase, a second site on the 20,000-dalton light chain of smooth muscle myosin is phosphorylated (Ikebe, M., and Hartshorne, D. J. (1985) J. Biol. Chem. 260, 10027-10031). In this communication the site is identified and kinetics associated with its phosphorylation and dephosphorylation are described. The doubly phosphorylated 20,000-dalton light chain from turkey gizzard myosin was hydrolyzed with alpha-chymotrypsin and the phosphorylated peptide was isolated by reverse phase chromatography. Following amino acid analyses and partial sequence determinations the second site of phosphorylation is shown to be threonine 18. This site is distinct from the threonine residue phosphorylated by protein kinase C. The time courses of phosphorylation of serine 19 and threonine 18 in isolated light chains follow a single exponential indicating a random process, although the phosphorylation rates differ considerably. The values of kcat/Km for serine 19 and threonine 18 for isolated light chains are 550 and 0.2 min-1 microM-1, respectively. With intact myosin, phosphorylation of serine 19 is biphasic; kcat/Km values are 22.5 and 7.5 min-1 microM-1 for the fast and slow phases, respectively. In contrast, phosphorylation of threonine 18 in intact myosin is a random, but markedly slower process, kcat/Km = 0.44 min-1 microM-1. Dephosphorylation of doubly phosphorylated myosin (approximately 4 mol of phosphate/mol of myosin) and isolated light chains (approximately 2 mol of phosphate/mol of light chain) follows a random process and dephosphorylation of the serine 19 and threonine 18 sites occurs at similar rates.  相似文献   

5.
Phosphorylation of rabbit skeletal muscle myosin in situ   总被引:4,自引:0,他引:4  
Myosin light chain (P light chain) is phosphorylated by Ca2+ X calmodulin-dependent myosin light chain kinase. Based on studies with rat skeletal muscles, it has been shown that P light chain phosphorylation correlated to the extent of potentiation of isometric twitch tension. It is not clear whether this correlation exists in rabbit skeletal muscle, which has been the primary source of contractile proteins for biochemical studies. Therefore, phosphorylation of myosin P light chain in rabbit slow-twitch soleus and fast-twitch plantaris muscles in situ was examined. Electrical stimulation (5 Hz, 20 seconds) of plantaris muscle produced an increase in the phosphate content of P light chain from 0.17 to 0.45 mol phosphate/mol P light chain. This increase in phosphate content was accompanied by a 58% increase in maximal isometric twitch tension. Tetanic stimulation (100 Hz, 15 seconds) of rabbit soleus muscle resulted in only a small increase in P light chain phosphate content from 0.02 to 0.10 mol phosphate/mol P light chain, and posttetanic twitch tension did not increase significantly. The correlation between potentiated isometric twitch tension and P light chain phosphorylation in rabbit fast-twitch muscle is similar to that observed in rat skeletal muscle. These results were consistent with the hypothesis that phosphorylation of rabbit skeletal muscle myosin, which results in an increase in actin-activated ATPase activity, may be related to isometric twitch potentiation.  相似文献   

6.
Stretching to 1.7 times the resting length of porcine carotid arteries reversibly prevents active tension development by K+ or norepinephrine stimulation. The 20,000-dalton light chain of myosin was maximally phosphorylated in the stretched noncontracting muscles, equal to that in the nonstretched contracting muscles challenged with K+ or norepinephrine. These results show that the contractile event is not a prerequisite for phosphorylation. Furthermore, stretching alone also induced maximal light chain phosphorylation even in the absence of K+ or norepinephrine. The stretch-induced light chain phosphorylation was not affected by exhaustive washing of the muscle with Ca2+-free physiological salt solution, treatment of the muscle with verapamil, or by a short exposure to ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). Prolonged EGTA treatment abolished the stretch-induced light chain phosphorylation. All evidence suggests that upon stretch, Ca2+ is released from intracellular sources and this Ca2+ activates the myosin light chain kinase producing phosphorylation of the light chain.  相似文献   

7.
Isometric force developed by skinned gizzard muscle fiber bundles and levels of phosphorylation and thiophosphorylation of the 20,000-dalton myosin light chain were determined. These data showed a highly non-linear relationship between isometric force and myosin light-chain phosphorylation. Maximum force was developed at approximately 0.2 mol of phosphate/mol of light chain as reported previously (Hoar, P. E., Kerrick, W. G. L., and Cassidy, P. S. (1979) Science 204, 503-506). In contrast, the relationship between isometric force and myosin light-chain thiophosphorylation was linear, with maximum force occurring at 1.0 mol of thiophosphate/mol of myosin light chain. These observations are consistent with the latch-bridge hypothesis for conditions of varying myosin light-chain phosphatase/myosin light-chain kinase activity ratios as discussed by Hai and Murphy [1988) Am. J. Physiol. 254, C99-C106). To further test the latch-bridge hypothesis, ATPase activity was also measured during isometric force development in these fiber bundles. The relationship between isometric force and ATPase activity was linear whether the myosin light chains were phosphorylated or thiophosphorylated. Thus the number of cycling myosin cross-bridges, as measured by ATPase activity, was directly proportional to the force the muscle developed, not to the level of myosin light-chain phosphorylation. This finding that high levels of tension generated at low levels of light-chain phosphorylation are associated with high levels of ATPase activity is inconsistent with the latch-bridge model (Hai and Murphy, 1988).  相似文献   

8.
Smooth muscle myosin light chain kinase, a calmodulin-dependent enzyme, binds 1 mol of calmodulin/mol of kinase in the presence of calcium (Adelstein, R. S., and Klee, C. B. (1981) J. Biol. Chem. 256, in press. This enzyme is a substrate for cAMP-dependent protein kinase whether or not calmodulin is bound. When calmodulin is not bound to myosin kinase, protein kinase incorporates phosphate into two sites in myosin kinase. Under these circumstances, phosphorylation markedly lowers the rate of myosin kinase activity. The decrease in myosin kinase activity is due to a 10-20-fold increase in the amount of calmodulin necessary for 50% activation of kinase activity. The effect of phosphorylation on the activity of myosin kinase can be reversed by dephosphorylation using a purified phosphatase (Pato, M. D., and Adelstein, R. S. (1980) J. Biol. Chem. 255, 6535-6538) isolated from smooth muscle. When calmodulin is bound to myosin kinase, phosphate is incorporated into a single site with no effect on myosin kinase activity. The presence of at least two sites that can be phosphorylated in myosin kinase was confirmed by tryptic digestion of denatured myosin kinase.  相似文献   

9.
We have partially purified myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) from Dictyostelium discoideum. MLCK was purified 4,700-fold with a yield of approximately 1 mg from 350 g of cells. The enzyme is very acidic as suggested by its tight binding to DEAE. Dictyostelium MLCK has an apparent native molecular mass on HPLC G3000SW of approximately 30,000 D. Mg2+ is required for enzyme activity. Ca2+ inhibits activity and this inhibition is not relieved by calmodulin. cAMP or cGMP have no effect on enzyme activity. Dictyostelium MLCK is very specific for the 18,000-D light chain of Dictyostelium myosin and does not phosphorylate the light chain of several other myosins tested. Myosin purified from log-phase amebas of Dictyostelium has approximately 0.3 mol Pi/mol 18,000-D light chain as assayed by glycerol-urea gel electrophoresis. Dictyostelium MLCK can phosphorylate this myosin to a stoichiometry approaching 1 mol Pi/mol 18,000-D light chain. MLCP, which was partially purified, selectively removes phosphate from the 18,000-D light chain but not from the heavy chain of Dictyostelium myosin. Phosphatase-treated Dictyostelium myosin has less than or equal to 0.01 mol Pi/mol 18,000-D light chain. Phosphatase-treated myosin could be rephosphorylated to greater than or equal to 0.96 mol Pi/mol 18,000-D light chain by incubation with MLCK and ATP. We found myosin thick filament assembly to be independent of the extent of 18,000-D light-chain phosphorylation when measured as a function of ionic strength. However, actin-activated Mg2+-ATPase activity of Dictyostelium myosin was found to be directly related to the extent of phosphorylation of the 18,000-D light chain. MLCK-treated myosin moved in an in vitro motility assay (Sheetz, M. P., and J. A. Spudich, 1983, Nature (Lond.), 305:31-35) at approximately 1.4 micron/s whereas phosphatase-treated myosin moved only slowly or not at all. The effects of phosphatase treatment on the movement were fully reversed by subsequent treatment with MLCK.  相似文献   

10.
Treatment of human platelets with 162 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in phosphorylation of a number of peptides, including myosin heavy chain and the 20-kDa myosin light chain. The site phosphorylated on the myosin heavy chain was localized by two-dimensional peptide mapping to a serine residue(s) in a single major tryptic phosphopeptide. This phosphopeptide co-migrated with a tryptic peptide that was produced following in vitro phosphorylation of platelet myosin heavy chain using protein kinase C. The sites phosphorylated in the 20-kDa myosin light chain in intact cells were analyzed by two-dimensional mapping of tryptic peptides and found to correspond to Ser1 and Ser2 in the turkey gizzard myosin light chain. In vitro phosphorylation of purified human platelet myosin by protein kinase C showed that in addition to Ser1 and Ser2, a third site corresponding to Thr9 in turkey gizzard myosin light chain is also phosphorylated. The phosphorylatable myosin light chains from human platelets were found to consist of two major isoforms present in approximately equal amounts, but differing in their molecular weights and isoelectric points. A third, minor isoform was also visualized by two-dimensional gel electrophoresis. Following treatment with TPA, both the mono- and diphosphorylated forms of each isoform could be visualized, and the sites of phosphorylation were identified. The phosphate content rose from negligible amounts found prior to treatment with TPA to 1.2 mol of phosphate/mol of myosin light chain and 0.7 mol of phosphate/mol of myosin heavy chain following treatment. These results suggest that TPA mediates phosphorylation of both myosin light and heavy chains in intact platelets by activation of protein kinase C.  相似文献   

11.
IgE-mediated stimulation of rat basophilic leukemia (RBL-2H3) cells results in the secretion of histamine. Myosin immunoprecipitated from these cells shows an increase in the amount of radioactive phosphate incorporated into its heavy (200 kDa) and light (20 kDa) chains. In unstimulated cells two-dimensional mapping of tryptic peptides of the myosin light chain reveals one phosphopeptide containing the serine residue phosphorylated by myosin light chain kinase. Following stimulation a second phosphopeptide appears containing a serine residue phosphorylated by protein kinase C. Tryptic phosphopeptide maps derived from myosin heavy chains show that unstimulated cells contain three major phosphopeptides. Following stimulation a new tryptic phosphopeptide appears containing a serine site phosphorylated by protein kinase C. The stoichiometry of phosphorylation of the myosin light and heavy chains was determined before and after antigenic stimulation. Before stimulation, myosin light chains contained 0.4 mol of phosphate/mol of light chain all confined to a serine not phosphorylated by protein kinase C. Cells that secreted 44% of their total histamine in 10 min exhibited an increase in phosphate content at sites phosphorylated by protein kinase C from 0 mol of phosphate/mol of myosin subunit to 0.7 mol of phosphate/mol of light chain and to 1 mol of phosphate/mol of heavy chain. When RBL-2H3 cells were made permeable with streptolysin O they still showed a qualitatively similar pattern of secretion and phosphorylation. Our results show that the time course of histamine secretion from stimulated RBL-2H3 cells parallels that of myosin heavy and light chain phosphorylation by protein kinase C.  相似文献   

12.
We have studied the effect of myosin P-light chain phosphorylation on the isometric tension generated by skinned fibers from rabbit psoas muscle at 0.6 and 10 microM Ca2+. At the lower Ca2+ concentration, which produced 10-20% of the maximal isometric tension obtained at 10 microM Ca2+, addition of purified myosin light chain resulted in a 50% increase in isometric tension which correlated with an increase in P-light chain phosphorylation from 0.10 to 0.80 mol of phosphate/mol of P-light chain. Addition of a phosphoprotein phosphatase reversed the isometric tension response and dephosphorylated P-light chain. At the higher Ca2+ concentration, P-light chain phosphorylation was found to have little effect on isometric tension. Fibers prepared and stored at -20 degrees C in a buffer containing MgATP, KF, and potassium phosphate incorporated 0.80 mol of phosphate/mol of P-light chain. Addition of phosphoprotein phosphatase to these fibers incubated at 0.6 microM Ca2+ caused a reduction in isometric tension and dephosphorylation of the P-light chain. There was no difference before and after phosphorylation of P-light chain in the normalized force-velocity relationship for fibers at the lower Ca2+ concentration, and the extrapolated maximum shortening velocity was 2.2 fiber lengths/s. Our results suggest that in vertebrate skeletal muscle, P-light chain phosphorylation increases the force level at submaximal Ca2+ concentrations, probably by affecting the interaction between the myosin cross-bridge and the thin filament.  相似文献   

13.
Calmodulin-dependent myosin light chain kinase phosphorylates two light chain subunits on each myosin molecule. We have developed a method for measuring nonphosphorylated, monophosphorylated, and diphosphorylated forms of myosin in smooth muscle. Four protein bands were separated in tissue extracts by nondenaturing polyacrylamide gel electrophoresis in the presence of pyrophosphate. Immunoblots demonstrated that three forms (designated M, MP, and MP2) reacted with rabbit antisera prepared against the purified phosphorylatable light chain (P-light chain) from bovine tracheal smooth muscle. Evidence was obtained that M, MP, and MP2 represented nonphosphorylated, monophosphorylated, and diphosphorylated myosin, respectively, and that the other protein band was probably filamin. The formation of different phosphorylated forms of myosin was measured in bovine trachealis strips neurally stimulated from 1.0 to 3.5 s and quick-frozen. There was no detectable MP or MP2 in unstimulated muscles; the extent of P-light chain phosphorylation measured directly was 0.02 +/- 0.01 mol of phosphate/mol of P-light chain. After 2.5-s stimulation, maximal values of 0.63 +/- 0.06 mol of phosphate/mol of P-light chain and 0.40 +/- 0.06 MP2/myosintotal were obtained. During continuous neural stimulation from 1.0 to 3.5 s, the relationship between the extent of P-light chain phosphorylation (measured directly or calculated) and the relative amount of MP2 is consistent with a random phosphorylation process.  相似文献   

14.
Conditions are described for the preparation of functional myofibrils and myosin light chains from freeze-clamped beating hearts with the state of light chain phosphorylation chemically 'frozen' during the extraction procedure. Myofibrils were shown to be functionally intact by measurement of Ca2+ binding and ATPase activity. Highly purified cardiac myosin light chains could be routinely isolated from myofibrillar preparations using ethanol fractionation together with ion-exchange chromatography. Analysis of light chains for covalent phosphate indicated that basal levels of phosphorylation of the 18--20 000 dalton light chain of myosin in rabbit hearts beating in situ or in a perfusion apparatus were 0.3--0.4 mol/mol. Covalent phosphate content of the light chain fraction did not change during perfusion of hearts with 10 microM epinephrine.  相似文献   

15.
The principal signal to activate smooth muscle contraction is phosphorylation of the regulatory light chains of myosin (LC(20)) at Ser(19) by Ca(2+)/calmodulin-dependent myosin light chain kinase. Inhibition of myosin light chain phosphatase leads to Ca(2+)-independent phosphorylation at both Ser(19) and Thr(18) by integrin-linked kinase and/or zipper-interacting protein kinase. The functional effects of phosphorylation at Thr(18) on steady-state isometric force and relaxation rate were investigated in Triton-skinned rat caudal arterial smooth muscle strips. Sequential phosphorylation at Ser(19) and Thr(18) was achieved by treatment with adenosine 5'-O-(3-thiotriphosphate) in the presence of Ca(2+), which induced stoichiometric thiophosphorylation at Ser(19), followed by microcystin (phosphatase inhibitor) in the absence of Ca(2+), which induced phosphorylation at Thr(18). Phosphorylation at Thr(18) had no effect on steady-state force induced by Ser(19) thiophosphorylation. However, phosphorylation of Ser(19) or both Ser(19) and Thr(18) to comparable stoichiometries (0.5 mol of P(i)/mol of LC(20)) and similar levels of isometric force revealed differences in the rates of dephosphorylation and relaxation following removal of the stimulus: t(½) values for dephosphorylation were 83.3 and 560 s, and for relaxation were 560 and 1293 s, for monophosphorylated (Ser(19)) and diphosphorylated LC(20), respectively. We conclude that phosphorylation at Thr(18) decreases the rates of LC(20) dephosphorylation and smooth muscle relaxation compared with LC(20) phosphorylated exclusively at Ser(19). These effects of LC(20) diphosphorylation, combined with increased Ser(19) phosphorylation (Ca(2+)-independent), may underlie the hypercontractility that is observed in response to certain physiological contractile stimuli, and under pathological conditions such as cerebral and coronary arterial vasospasm, intimal hyperplasia, and hypertension.  相似文献   

16.
J P Rieker  J H Collins 《FEBS letters》1987,223(2):262-266
Calmodulin-dependent myosin light chain kinase isolated from chicken intestinal brush border phosphorylates brush border myosin at an apparently single serine identical to that phosphorylated by smooth muscle myosin light chain kinase. Phosphorylation to 1.8 mol phosphate/mol myosin activated the myosin actin-activated ATPase about 10-fold, to about 50 nmol/min per mg. Myosin phosphorylated on its light chains could then be further phosphorylated to a total of 3.2 mol phosphate per mol by brush border calmodulin-dependent heavy chain kinase. Heavy chain phosphorylation did not alter the actin-activated ATPase of either myosin prephosphorylated on its light chains or of unphosphorylated myosin.  相似文献   

17.
Myosin light chain phosphorylation in intact rat thoracic aorta was elevated during contraction induced by 0.3 microM norepinephrine, but was not maintained. Addition of 0.5 microM sodium nitroprusside to norepinephrine treated rat aorta strips led to elevation of cyclic GMP levels, relaxation of tension, and dephosphorylation of myosin light chain. Depletion of extracellular calcium or addition of calmodulin antagonists trifluoperazine and W7 diminished the contraction and phosphorylation of myosin light chain by norepinephrine, but did not prevent dephosphorylation by sodium nitroprusside or the elevated levels of cyclic GMP. Isoproterenol, 8-bromo cyclic GMP, and dibutyryl cyclic AMP all caused dephosphorylation of myosin light chain and induced relaxation during the period of development of tone. Eight other proteins had increased phosphorylation following norepinephrine treatment and one protein had less phosphorylation. The different proteins phosphorylated by norepinephrine showed varying degrees of sensitivity to Ca2+-free solution and to the calmodulin antagonists. The pattern of protein phosphorylation caused by sodium nitroprusside was best mimicked by 8-bromo cyclic GMP, rather than isoproterenol and dibutyryl cyclic AMP. These proteins were, generally, unaffected by Ca2+-free solution and the calmodulin antagonists. The present observations support the hypothesis that vasodilators inhibit tone development through myosin light chain dephosphorylation. Furthermore, the nitrovasodilators act through elevation of cyclic GMP and phosphorylation of proteins by cyclic GMP-dependent protein kinase.  相似文献   

18.
Smooth muscle heavy meromyosin (HMM) can serve as a substrate for the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) as well as for the Ca2+/calmodulin-dependent kinase, myosin light chain kinase. When turkey gizzard HMM is incubated with protein kinase C, 1.7-2.2 mol of phosphate are incorporated per mol of HMM, all of it into the 20,000-Da light chain of HMM. Two-dimensional peptide mapping following tryptic hydrolysis revealed that protein kinase C phosphorylated a different site on the 20,000-Da HMM light chain than did myosin light chain kinase. Moreover, sequential phosphorylation of HMM by myosin light chain kinase and protein kinase C resulted in the incorporation of 4 mol of phosphate/mol of HMM, i.e. 2 mol of phosphate into each 20,000-Da light chain. When unphosphorylated HMM was phosphorylated by myosin light chain kinase, its actin-activated MgATPase activity increased from 4 nmol to 156 nmol of phosphate released/mg of HMM/min. Subsequent phosphorylation of this phosphorylated HMM by protein kinase C decreased the actin-activated MgATPase activity of HMM to 75 nmol of phosphate released/mg of HMM/min.  相似文献   

19.
The phosphatase inhibitor, okadaic acid, has been used to test the hypothesis that myosin light chain phosphatase activity plays a central role in latchbridge formation in smooth muscle. In the permeabilized rabbit portal vein there is a non-linear relationship between myosin light chain phosphorylation and force production such that maximum force output occurs with about 50% phosphorylation. Treatment of the muscle with okadaic acid does not change this relationship even though there is a profound inhibition of phosphatase activity. The data suggest that dephosphorylation of the myosin light chain while the myosin is in the force producing state does not account for the high force output with low levels of light chain phosphorylation in smooth muscle.  相似文献   

20.
Developmental changes in the regulation of smooth muscle contraction were examined in urinary bladder smooth muscle from mice. Maximal active stress was lower in newborn tissue compared with adult, and it was correlated with a lower content of actin and myosin. Sensitivity to extracellular Ca2+ during high-K+ contraction, was higher in newborn compared with 3-wk-old and adult bladder strips. Concentrations at half maximal tension (EC50) were 0.57 +/- 0.01, 1.14 +/- 0.12, and 1.31 +/- 0.08 mM. Force of the newborn tissue was inhibited by approximately 45% by the nonmuscle myosin inhibitor Blebbistatin, whereas adult tissue was not affected. The calcium sensitivity in newborn tissue was not affected by Blebbistatin, suggesting that nonmuscle myosin is not a primary cause for increased calcium sensitivity. The relation between intracellular [Ca2+] and force was shifted toward lower [Ca2+] in the newborn bladders. This increased Ca2+ sensitivity was also found in permeabilized muscles (EC50: 6.10 +/- 0.07, 5.77 +/- 0.08, and 5.55 +/- 0.02 pCa units, in newborn, 3-wk-old, and adult tissues). It was associated with an increased myosin light chain phosphorylation and a decreased rate of dephosphorylation. No difference was observed in the myosin light chain phosphorylation rate, whereas the rate of myosin light chain phosphatase-induced relaxation was about twofold slower in the newborn tissue. The decreased rate was associated with a lower expression of the phosphatase regulatory subunit MYPT-1 in newborn tissue. The results show that myosin light chain phosphatase activity can be developmentally regulated in mammalian urinary bladders. The resultant alterations in Ca2+ sensitivity may be of importance for the nervous and myogenic control of the newborn bladders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号