首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A temperature-sensitive mutant of Saccharomyces cerevisiae was identified which at the restrictive temperature of 37 degrees C is unable to secrete a number of cell wall-associated proteins and thus resembles previously reported sec mutants. In contrast to other sec mutants, however, both the temperature-sensitive growth and the secretion defects can be repaired by the addition of D-mannose to growth media. We show that the mutant possesses a single, apparently recessive mutation which leads to the production of a thermolabile phosphomannose isomerase.  相似文献   

2.
A positive selection system was developed forAgrobacterium-mediated transformation of rice that does not use toxic compounds such as antibiotics or herbicides. The selection system is based on theEscherichia coli phosphomannose isomerase (pmi) gene as a selectable marker and mannose as the selective agent. Only transgenic plants were able to metabolize mannose into a usable source of carbon, fructose. Selection was achieved using a combination of mannose and sucrose at 10 g/L and 5 g/L, respectively. Transgenic rice plants were produced efficiently injapanica rice variety Zhonghua 8, with transformation frequency of 16.5%, which was slightly lower than that achieved by hygromycin selection.  相似文献   

3.
4.
Phosphomannose isomerase (PMI) deficiency or congenital disorders of glycosylation type Ib (CDG Ib) is the only CDG that can be treated. Despite variable severity leading to dramatically different prognoses, clinical presentation is relatively homogeneous with liver and digestive features associated with hyperinsulinism and inconstant thrombosis. A feature of CDG is that coagulation factors are decreased. In our experience, mannose given orally at least 4 times per day not only transformed lethal CDG Ib into a treatable disease, but also improved the general condition and digestive symptoms of all reported patients but one. Liver disease, however, still persisted. Heparin can be used as an alternative to mannose in certain patients, particularly in the treatment of enteropathy.  相似文献   

5.
6.
The secreted invertase (EC 3.2.1.26) of Saccharomyces cerevisiae is a glycoenzyme that contains N- and O-linked mannoses in 40/1 proportion. The small amount of mannose chains O-linked to invertase is distributed as follows: mannose (20%), mannobiose (50%), mannotriose (6%), mannotetraose (7%) and mannopentaose (17%).  相似文献   

7.
8.
The enzyme GDP mannose:dolichyl-phosphate O-beta-D-mannosyltransferase (GDP-Man:DolP mannosyltransferase) catalyzing the reaction: GDP-man + DolP in equilibrium DolP-Man + GDP has been purified from Saccharomyces cerevisiae to homogeneity. The purification was achieved using a combination of column chromatographic methods with preparative gel electrophoresis. The enzyme has an apparent molecular mass of 30 kDa on SDS/polyacrylamide gels. Enzymatic activity could be correlated directly with this band. Antibodies against the transferase were raised in rabbits. The immune serum obtained removed enzymatic activity from a detergent extract of yeast membranes and reacted specifically with the 30-kDa band on immunoblots. Experiments addressing the orientation of this enzyme in the endoplasmic reticulum membrane are presented by using selective trypsin and N-ethylmaleimide treatment.  相似文献   

9.
Summary The structural gene PG11 coding for phosphoglucose isomerase was replaced by the LEU2 gene in the genome of Saccharomyces cerevisiae. Plasmids carrying the LEU2 gene between genomic regions flanking the PG11 gene were constructed and used to transform a PGI1/pgi1 diploid strain. Stable transformants lacking the PGI1 allele were isolated. Southern analysis of their meiotic products showed that haploid strains with a deletion of 1.6 kb within the 2.2 kb PG11 coding region were viable. Thus, the PGI1 gene is not essential in yeasts. However, unlike pgi1 mutants with residual phosphoglucose isomerase activity, no growth was detected in the pgi1 haploid strains when fructose was supplied as sole carbon source. The wild-type growth rate could be restored by adding 0.1% glucose to the medium. Furthermore, pgi1 mutants with residual enzymatic activity grew very slowly on fructose-supplemented media containing up to 2% glucose. Strains carrying the deletion allele, however, failed to grow at glucose concentrations higher than 0.5%. Also the pgi1 strains did not grow in glucose as sole carbon source. On the other hand pgi1/pgi1 diploid strains did not sporulate on the usual acetate medium. This defect could be alleviated by the addition of 0.05% glucose to the sporulation medium. Under these conditions the pgi1 mutants sporulated with an efficiency of 25% compared with the wild type. These results suggest that (a) the phosphoglucose isomerase reaction is the only step catalysing the interconversion of glucose-6-P and fructose-6-P, (b) glucose-6-P is essential in yeasts, and (c) the oxidation of glucose-6-P through the glucose-6-P dehydrogenase reaction is not sufficient to support growth in yeasts.  相似文献   

10.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

11.
MPI encodes phosphomannose isomerase, which interconverts fructose 6-phosphate and mannose 6-phosphate (Man-6-P), used for glycoconjugate biosynthesis. MPI mutations in humans impair protein glycosylation causing congenital disorder of glycosylation Ib (CDG-Ib), but oral mannose supplements normalize glycosylation. To establish a mannose-responsive mouse model for CDG-Ib, we ablated Mpi and provided dams with mannose to rescue the anticipated defective glycosylation. Surprisingly, although glycosylation was normal, Mpi(-/-) embryos died around E11.5. Mannose supplementation even hastened their death, suggesting that man-nose was toxic. Mpi(-/-) embryos showed growth retardation and placental hyperplasia. More than 90% of Mpi(-/-) embryos failed to form yolk sac vasculature, and 35% failed chorioallantoic fusion. We generated primary embryonic fibroblasts to investigate the mechanisms leading to embryonic lethality and found that mannose caused a concentration- and time-dependent accumulation of Man 6-P in Mpi(-/-) fibroblasts. In parallel, ATP decreased by more than 70% after 24 h compared with Mpi(+/+) controls. In cell lysates, Man-6-P inhibited hexokinase (70%), phosphoglucose isomerase (65%), and glucose-6-phosphate dehydrogenase (85%), but not phosphofructokinase. Incubating intact Mpi(-/-) fibroblasts with 2-[(3)H]deoxyglucose confirmed mannose-dependent hexokinase inhibition. Our results in vitro suggest that mannose toxicity in Mpi(-/-) embryos is caused by Man-6-P accumulation, which inhibits glucose metabolism and depletes intracellular ATP. This was confirmed in E10.5 Mpi(-/-) embryos where Man-6-P increased more than 10 times, and ATP decreased by 50% compared with Mpi(+/+) littermates. Because Mpi ablation is embryonic lethal, a murine CDG-Ib model will require hypomorphic Mpi alleles.  相似文献   

12.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

13.
Extracellular polysaccharide (EPS) is produced by diverse bacterial pathogens and fulfills assorted roles, including providing a structural matrix for biofilm formation and more specific functions in virulence, such as protection against immune defenses. We report here the first investigation of some of the genes important for biofilm formation in Photorhabdus luminescens and demonstrate the key role of the phosphomannose isomerase gene, manA, in the structure of functional EPS. Phenotypic analyses of a manA-deficient mutant showed the importance of EPS in motility, insect virulence, and biofilm formation on abiotic surfaces as well as the requirement of this gene for the use of mannose as the sole carbon source. Conversely, this defect had no apparent impact on symbiosis with the heterorhabditid nematode vector. A more detailed analysis of biofilm formation revealed that the manA mutant was able to attach to surfaces with the same efficiency as that of the wild-type strain but could not develop the more extended biofilm matrix structures. A compositional analysis of P. luminescens EPS reveals how the manA mutation has a major effect on the formation of a complete, branched EPS.  相似文献   

14.
15.
16.
17.
Inulase-secreting strain of Saccharomyces cerevisiae produces fructose   总被引:2,自引:0,他引:2  
The gene encoding inulase of the yeast Kluyveromyces marxianus (INU1Km) was cloned and expressed in the inulin-negative yeast Saccharomyces cerevisiae. Cells of S. cerevisiae transformed with the INU1Km gene have acquired extracellular inulase activity and were able to grow in the medium with inulin as a sole carbon source. The S. cerevisiae strain was constructed that is capable of heterologous expression of secreted K. marxianus inulase and is defective in fructose uptake due to null-mutations of the hexokinase structural genes HXK1 and HXK2. When grown in inulin-containing media, this strain is capable of accumulating at least 10% glucose-free fructose in the culture liquid.  相似文献   

18.
Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. ABBREVIATIONS: PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.  相似文献   

19.
Electrophoretic karyotypes of two strains of Saccharomyces cerevisiae, a haploid laboratory strain and a wild strain known to be at least diploid, have been checked during vegetative growth. The karyotype of the haploid strain was very stable; however, the diploid strain underwent frequent modifications. In most cases the number of bands was reduced, but occasionally we observed one band splitting into two. In one case, chromosomal rearrangements took place between differently sized copies of chromosomes I and VI. We concluded that the chromosome length polymorphism observed among wild strains of S. cerevisiae could be explained partly by chromosomal structure reorganization occurring during mitosis.  相似文献   

20.
Transformation of Saccharomyces cerevisiae by yeast expression plasmids bearing the Escherichia coli xylose isomerase gene leads to production of the protein. Western blotting (immunoblotting) experiments show that immunoreactive protein chains which comigrate with the E. coli enzyme are made in the transformant strains and that the amount produced parallels the copy number of the plasmid. When comparable amounts of immunologically cross-reactive xylose isomerase protein made in E. coli or S. cerevisiae were assayed for enzymatic activity, however, the yeast protein was at least 10(3)-fold less active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号