首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systemic study of single amino acid substitutions in bacteriophage T4 lysozyme permitted a test of the concept that conserved amino acid residues are more functionally important than nonconserved residues. Substitutions of amino acid residues that are conserved among five bacteriophage-encoded lysozymes were found to lead more frequently to loss of function than substitutions of nonconserved residues. Of 163 residues tested, only 74 (45%) are sensitive to at least one substitution; however, all 14 residues that are fully conserved are sensitive to substitutions.  相似文献   

2.
Functional mapping of apidaecin through secondary structure correlation   总被引:2,自引:0,他引:2  
The mechanism through which apidaecin (GNNRPVYIPQPRPPHPRL) like proline rich, non-helical, antibacterial peptides penetrate into the bacterial cells is not yet clearly understood. To comprehend their transport across the bacterial cells, a detailed structure-activity correlation of apidaecin and its selected analogs is undertaken. In membrane like environment apidaecin exhibits a structural change which is mislaid in its biologically inactive P11-->Q substitution analog. This new structure, acquired by apidaecin but not by P11-->Q might be responsible for the difference in their antibacterial response. With this suggestion we explored the membrane permeation response of both by incubating them with small unilamellar vesicles (SUV). Unlike apidaecin, the P11-->Q did not induce leakage from SUV. To confirm whether this response is due to the substitution of P11-->Q of PQP motif, we chose P-ab (YVPLPNVPQPGRRPFPT), an N-terminal domain of abaecin which is homologous to apidaecin in terms of all prolines including conserved PQP, for comparison. Unlike P11-->Q but like apidaecin, P-ab also permeablized the SUV. Computational analysis also indicated that this particular mutation has a strong structural impact. These results led us to hypothesize that in bacterial environment apidaecin undergoes an ordered structural change that facilitates its entry into the bacterial membrane and also that PXP motives are important for this structural change. Apidaecin analogs not viable to organize/transform into this functionally active conformation are deleteriously affected. Adaptation to a unique conformation though insufficient (since functional binding with intracellular targets is also mandatory) seems to be an important prerequisite for the manifestation of full spectrum of antibacterial activity of apidaecin like peptides.  相似文献   

3.
We describe a general, modular method for developing protocols to identify the amino acid residues that most likely define the division of a protein superfamily into two subsets. As one possibility, we use PROBE to gather superfamily members and perform an ungapped alignment. We then use a modified BLOSUM62 substitution matrix to determine the discriminating power of each column of aligned residues. The overall method is particularly useful for predicting amino acids responsible for substrate or binding specificity when no structures are available. We apply our method to three pairs of protein classes in three different superfamilies, and present our results, some of which have been experimentally verified. This approach may accelerate the elucidation of enzymic substrate specificity, which is critical for both mechanistic insights into biocatalysis and ultimate application.  相似文献   

4.
To identify the amino acids responsible for the substrate binding of chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), Tyr148 and Lys218 of the chitosanase were mutated to serine and proline, respectively, and the mutated chitosanases were characterized. The enzymatic activities of Y148S and K218P were found to be 12.5% and 0.16% of the wild type, respectively. When the (GlcN)3 binding ability to the chitosanase was evaluated by fluorescence spectroscopy and thermal unfolding experiments, the binding abilities of both mutant enzymes were markedly reduced as compared with the wild type enzyme. The affinity of the enzyme for the trisaccharide decreased by 1.0 kcal/mol of binding free energy for Y148S, and 3.7 kcal/mol for K218P. The crystal structure of K218P revealed that Pro218 forms a cis-peptide bond and that the state of the flexible loop containing the 218th residue is considerably affected by the mutation. Thus, we conclude that the flexible loop containing Lys218 plays an important role in substrate binding, and that the role of Tyr148 is less critical, but still important, due to a stacking interaction or hydrogen bond.  相似文献   

5.
6.
Human glutamate dehydrogenase isozymes (hGDH1 and hGDH2) differ markedly in their inhibition by GTP. These regulatory preferences must arise from amino acid residues that are not common between hGDH isozymes. We have constructed chimeric enzymes by reciprocally switching the corresponding amino acid segments 390-465 in hGDH isozymes that are located within or near the C-terminal 48-residue antenna helix, which is thought to be part of the regulatory domain of mammalian GDHs. These resulted in triple mutations in amino acid sequences at 415, 443, and 456 sites that are not common between hGDH1 and hGDH2. The chimeric enzymes did not change their enzyme efficiency (kcat/Km) and expression level. Functional analyses, however, revealed that the chimeric mutants almost completely acquired the different GTP regulatory preference between hGDH isozymes. These results suggest that the 415, 443, and 456 residues acting in concert are responsible for the GTP inhibitory properties of hGDH isozymes.  相似文献   

7.
8.
The site-directed mutagenesis of the monomeric red fluorescent protein TagRFP and its variants was performed with the goal of generating reversibly photoactivatable fluorescent proteins. Amino acids at positions 69, 148, 165, 179, and 181 (enumeration according to the green fluorescent protein GFP) were shown to play a key role in the manifestation of the photoactivatable properties. A reversibly photoactivatable red fluorescent protein KFP-HC with excitation and emission maxima at 585 and 615 nm, respectively, was generated. The KFP-HC fluorescent intensity was decreased by 5–10 times under green light (530–560 nm) irradiation (due to the fall of the fluorescence quantum yield) and restored under irradiation with blue light (450–490 nm) or after incubation in the dark (recovery half-time of 30 min).  相似文献   

9.
10.
In order to investigate the residues associated with binding of the substrate taurocyamine in Arenicola mitochondrial taurocyamine kinase (TK), we performed Ala-scanning of the amino acid sequence HTKTV at positions 67-71 on the GS loop, and determined apparent K(m) and V(max) (appK(m) and appV(max), respectively) of the mutant forms for the substrates taurocyamine and glycocyamine. The appK(m) values for taurocyamine of the K69A, T70A and V71A mutants were significantly increased as compared with wild-type, suggesting that these residues are associated with taurocyamine binding. Of special interest is a property of V71A mutant: its catalytic efficiency for glycocyamine was twice that for taurocyamine, indicating that the V71A mutant acts like a glycocyamine kinase, rather than a TK. The role of the amino acid residue K95 of Arenicola MiTK was also examined. K95 was replaced with R, H, Y, I, A and E. K95R, K95H and K95I have a 3-fold higher affinity for taurocyamine, and activity was largely lost in K95E. On the other hand, the K95Y mutant showed a rather unique feature; namely, an increase in substrate concentration caused a decrease in initial velocity of the reaction (substrate inhibition). This is the first report on the key amino acid residues responsible for taurocyamine binding in mitochondrial TK.  相似文献   

11.
Asparagine (Asn)-71 of the xylanase (XYN) from Bacillus pumilus A-30 was found highly conserved in alkaline xylanases of family G/11. The mutated gene fragments containing different substitutions of Asn-71 was obtained by site-directed mutagenesis to study its role in the alkali-tolerant mechanism of xylanase. The xylanase activity was completely lost if Asn-71 residue was replaced by alkaline arginine (Arg) or lysine (Lys) residues, but obviously depressed with a shift in the pH optimum of the enzyme from 6.7 to 6.3 if substituted by serine (Ser) or aspartate (Asp) residues. No mutant with a shift of the pH optimum to a more basic value was found. Furthermore, N71D lost its activity in the alkaline pH range completely, while N71S did not lose as much as that of N71D. Except for Asn-71, the random mutagenesis to other residues of the xylanase was also studied. The alkali-tolerant mechanism of the xylanase was analyzed by their charged character, ionized state, and the hydrogen bond network of the residues surrounding the two catalytic residues on the basis of homology modeling of the mutated xylanases.  相似文献   

12.
Site-directed mutagenesis was used to study the structural basis of color diversity of fluorescent proteins by the example of two closely related proteins from one organism (coral polyp Zoanthus sp.), one of which produces green and the other, yellow fluorescence. As a result, the following conversions of emission colors were performed: from yellow to green, from yellow to a dual color (yellow and green), and from green to yellow. The saltatory character of the spectral transitions and the manifestation of the dual-color fluorescence suggest that chemically different fluorophores are responsible for the green and yellow fluorescence. The simultaneous presence of three residues, Gly63, Lys65, and Asp68, is necessary for the efficient formation of the yellow rather than green fluorophore. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2002, vol. 28, no. 4; see also http://www.maik.ru.  相似文献   

13.
KpnI DNA-(N6-adenine) methyltransferase (M.KpnI) recognises the sequence 5'-GGTACC-3' and transfers the methyl group from S-adenosyl-L-methionine (AdoMet) to the N6 position of the adenine residue in each strand. Earlier studies have shown that M.KpnI exists as a dimer in solution, unlike most other MTases. To address the importance of dimerisation for enzyme function, a three-dimensional model of M.KpnI was obtained based on protein fold-recognition analysis, using the crystal structures of M.RsrI and M.MboIIA as templates. Residues I146, I161 and Y167, the side chains of which are present in the putative dimerisation interface in the model, were targeted for site-directed mutagenesis. Methylation and in vitro restriction assays showed that the mutant MTases are catalytically inactive. Mutation at the I146 position resulted in complete disruption of the dimer. The replacement of I146 led to drastically reduced DNA and cofactor binding. Substitution of I161 resulted in weakening of the interaction between monomers, leading to both monomeric and dimeric species. Steady-state fluorescence measurements showed that the wild-type KpnI MTase induces structural distortion in bound DNA, while the mutant MTases do not. The results establish that monomeric MTase is catalytically inactive and that dimerisation is an essential event for M.KpnI to catalyse the methyl transfer reaction.  相似文献   

14.
Five amino acid residues responsible for extreme stability have been identified in cytochrome c(552) (HT c(552)) from a thermophilic bacterium, Hydrogenobacter thermophilus. The five residues, which are spatially distributed in three regions of HT c(552), were replaced with the corresponding residues in the homologous but less stable cytochrome c(551) (PA c(551)) from Pseudomonas aeruginosa. The quintuple HT c(552) variant (A7F/M13V/Y34F/Y43E/I78V) showed the same stability against guanidine hydrochloride denaturation as that of PA c(551), suggesting that the five residues in HT c(552) necessarily and sufficiently contribute to the overall stability. In the three HT c(552) variants carrying mutations in each of the three regions, the Y34F/Y43E mutations resulted in the greatest destabilization, by -13.3 kJ mol(-1), followed by A7F/M13V (-3.3 kJ mol(-1)) and then I78V (-1.5 kJ mol(-1)). The order of destabilization in HT c(552) was the same as that of stabilization in PA c(551) with reverse mutations such as F34Y/E43Y, F7A/V13M, and V78I (13.4, 10.3, and 0.3 kJ mol(-1), respectively). The results of guanidine hydrochloride denaturation were consistent with those of thermal denaturation for the same variants. The present study established a method for reciprocal mutation analysis. The effects of side-chain contacts were experimentally evaluated by swapping the residues between the two homologous proteins that differ in stability. A comparative study of the two proteins was a useful tool for assessing the amino acid contribution to the overall stability.  相似文献   

15.
The branched-chain amino acids (BCAAs) are essential amino acids and therefore must be continuously available for protein synthesis. However, BCAAs are toxic at high concentrations as evidenced by maple syrup urine disease (MSUD), which explains why animals have such an efficient oxidative mechanism for their disposal. Nevertheless, it is clear that leucine is special among the BCAAs. Leucine promotes global protein synthesis by signaling an increase in translation, promotes insulin release, and inhibits autophagic protein degradation. However, leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway, thereby terminating its positive effects on body protein accretion. A strong case can therefore be made that the proper leucine concentration in the various compartments of the body is critically important for maintaining body protein levels beyond simply the need of this essential amino acid for protein synthesis. The goal of the work of this laboratory is to establish the importance of regulation of the branched chain alpha-ketoacid dehydrogenase complex (BCKDC) to growth and maintenance of body protein. We hypothesize that proper regulation of the activity state of BCKDC by way of its kinase (BDK) and its phosphatase (BDP) is critically important for body growth, tissue repair, and maintenance of body protein. We believe that growth and protection of body protein during illness and stress will be improved by therapeutic control of BCKDC activity. We also believe that it is possible that the negative effects of some drugs (PPAR alpha ligands) and dietary supplements (medium chain fatty acids) on growth and body protein maintenance can be countered by therapeutic control of BCDKC activity.  相似文献   

16.
In the liver, glutamine utilization may be limited by the rate of transport across the plasma membrane by the System N carrier. System N-mediated transport activity has been solubilized from rat liver plasma membrane, partially purified, and then reconstituted into proteoliposomes. To identify the System N carrier protein, monoclonal antibodies were generated against the protein fraction enriched for System N activity. Two antibodies , 3E1-2 and 1E7-3, inhibited System N activity in hepatocytes. These antibodies also immunoprecipitated System N activity from a mixture of solubilized proteins and were specific for antigen recognition in that neither immunoprecipitated System A activity. The antibody recognized a single protein of molecular size 100 kDa by immunoblot analysis. Recognition of this protein by the antibody increased in parallel with the enrichment of System N activity in solubilized membrane fractions. These data suggest that a 100-kDa plasma membrane protein mediates System N transport activity in rat hepatocytes.  相似文献   

17.
Wang Q  Shoeman R  Traub P 《Biochemistry》2000,39(22):6645-6651
The amino acid residues responsible for stable binding of nucleic acids by the intermediate filament (IF) subunit protein vimentin were identified by a combination of enyzmatic and chemical ladder sequencing of photo-cross-linked vimentin-oligodeoxyribonucleotide complexes and analysis by MALDI-TOF mass spectrometry. Three tryptic peptides of vimentin (vim(28)(-)(35), vim(36)(-)(49), and vim(50)(-)(63)) were found to be cross-linked to oligo(dG.BrdU)(12). dG.3'-FITC. From a methodological standpoint, it was necessary to remove the bulk of the bound oligonucleotide by digestion with nuclease P1 to get reproducible spectra for most of the peptides studied. Additionally, removal of the phosphate group of the residually bound dUMP or modification of the amino terminus of the peptide-oligonucleotide complexes with dimethylaminoazobenzene isothiocyanate dramatically improved the quality of the MALDI-TOF spectra obtained, particularly for the vim(28)(-)(35) peptide. A single Tyr residue within each of these peptides (Tyr(29), Tyr(37), and Tyr(52)) was unequivocally demonstrated to be the unique site of cross-linking in each peptide. These three Tyr residues are contained within the two beta-ladder DNA-binding wings proposed for the middle of the vimentin non-alpha-helical head domain. The experimental approach described should be generally applicable to the study of protein-nucleic acid interactions and is currently being employed to characterize the DNA-binding sites of several other IF subunit proteins.  相似文献   

18.
Pyridoxal kinase (PLK; EC 2.7.1.35) is a key enzyme for vitamin B6 metabolism in animals. It catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal 5′-phosphate, an important cofactor for many enzymatic reactions. Bombyx mori PLK (BmPLK) is 10 or more residues shorter than mammalian PLKs, and some amino acid residues conserved in the PLKs from mammals are not maintained in the protein. Multiple sequence alignment suggested that amino acid residues Thr47, Ile54, Arg88, Asn121 and Glu230 might play important roles in BmPLK. In this study, we used a site-directed specific mutagenesis approach to determine the functional significance of these particular amino acid residues in BmPLK. Our results demonstrated that the mutation of Asn121 to Glu did not affect the catalytic function of BmPLK. The corresponding site-directed mutants of Thr47 to Asn, Ile54 to Phe, and Arg88 to Ile displayed a decreased catalytic efficiency and an elevated Km value for substrate relative to the wild-type value, and no enzyme activity could be detected in mutant of Trp230 to Glu. Circular dichroism analysis revealed that the mutation of Trp230 to Glu resulted in mis-folding of the protein. Our results provided direct evidence that residue Trp230 is crucial to maintain the structural and functional integrity of BmPLK. This study will add to the existing understanding of the characteristic of structure and function of BmPLK.  相似文献   

19.
The denim-washing performance of six purified fungal cellulases (four endo-1,4-beta-D-glucanases and two cellobiohydrolases) was compared using a model microassay. The performance of cellobiohydrolases per mg of protein was much lower than that of endoglucanases. For endoglucanases, it varied up to 5 times between the best and the worst enzyme. Experiments with amino acids immobilized on cross-linked agarose showed that their side chains may bind indigo owing to hydrophobic interactions and formation of hydrogen bonds. The best binding effects provided Tyr and Phe. Analysis of three-dimensional structures of cellulase molecules showed that a certain correlation exists between the washing performance of enzyme and (i) quantity (percentage) of aromatic residues exposed to solvent on the surface of protein globule or (ii) overall percentage of the surface hydrophobic residues. Data presented provide an evidence that the molecules of certain cellulases, which have hydrophobic domains (clusters of closely located non-polar residues) on their surface, may bind indigo and thus act as emulsifiers helping the dye to float out of cellulose fibers to the bulk solution.  相似文献   

20.
The nucleocapsid protein (NC) of HIV-1 is 55 amino acids in length and possesses two CCHC-type zinc fingers. Finger one (N-terminal) contributes significantly more to helix destabilizing activity than finger two (C-terminal). Five amino acids differ between the two zinc fingers. To determine at the amino acid level the reason for the apparent distinction between the fingers, each different residue in finger one was incrementally replaced by the one at the corresponding location in finger two. Mutants were analyzed in annealing assays with unstructured and structured substrates. Three groupings emerged: (1) those similar to wild-type levels (N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W, which had substantially greater helix destabilizing activity than that of the wild type. Unlike I24Q and the other mutants, N27D was defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro assays. Double and triple mutants F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix destabilization, suggesting that the I24Q and N27D mutations have a dominant negative effect and abolish the positive influence of F16W. Results show that amino acid differences at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号