首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The resistance of Solanum okadae Hawkes & Hjert. (PI 458367), Solanum oplocense Hawkes (PI 473368), and Solanum tarijense Hawkes (PI 414150) to the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Chrysomelidae: Chrysomelini), was studied. In replicated field trials all three accessions showed a high level of resistance to the beetle. No significant genetic variability between genotypes of the same species was found. Results from host acceptance behavior experiments, suitability for larval development tests, foliage consumption tests, and adult survival and oviposition tests supported the hypothesis that the mode of resistance differs between the three wild Solanum species. Solanum okadae and S. oplocense affected host acceptance and consumption. Because the beetle reacted differently to these two species it was hypothesized that the antifeedant chemical(s) differed in nature or quantity. S. tarijense contrasted with the other two species by affecting mostly adult colonization and oviposition.  相似文献   

2.
Choice and no-choice studies were conducted to determine how the glandular trichomes of the wild potato,Solanum berthaultii Hawkes, affect host preference of the Colorado potato beetle,Leptinotarsa decemlineata (Say). Given a feeding choice betweenS. tuberosum andS. berthaultii, larvae and adults preferred the foliage ofS. tuberosum, but adults were more discriminating. When foliage ofS. berthaultii was appressed toS. tuberosum leaflets, fewer adults fed on the appressed leaflets. When given a choice between ‘trichome-intact’ and ‘trichome-removed’S. berthaultii foliage, adults preferred to feed on the latter. The preference for ‘trichome-removed’ foliage and the percent of adults initiating feeding, increased with the degree of trichome removal. These studies provide evidence that the resistance ofS. berthaultii is associated with feeding deterrents localized in the glandular trichomes, thatS. berthaultii possesses more than one mechanism of resistance to the Colorado potato beetle, and that the expression of resistance is dependent on the developmental stage of the insect.  相似文献   

3.
Analysis of electrically recorded feeding behaviour of aphids was combined with colony‐development tests to search for sources of resistance to Myzus persicae (Sulzer) (Homoptera: Aphididae) in tuber‐bearing Solanum species (Solanaceae), aiming at a reduction of potato leaf roll virus (PLRV) transmission. Twenty genotypes, originating from 14 gene bank accessions, representing 13 wild tuber‐bearing Solanum spp., three Solanum tuberosum L. (potato) cultivars, and one S. tuberosum breeding line, were selected. Colony‐development tests were carried out in no‐choice experiments by placing adult aphids on plants of each genotype and counting numbers of nymphs and adults on young plants after 8 and 15 days, and on flowering plants after 14 and 30 days. Large differences were observed among genotypes: some developed small colonies and others developed large ones. Also, in a few genotypes, resistance in mature plants was different for leaves of different ages; young leaves were resistant to aphids whereas old senescent leaves were susceptible. The electrical penetration graph (DC‐EPG system) technique was used to study aphid feeding behaviour on each Solanum genotype for 6 h. Electrical penetration graph (EPG) results also showed large differences among the genotypes, indicating resistance at the leaf surface and at three different levels of plant tissue (epidermis, mesophyll, and phloem). Therefore, it was concluded that different mechanisms of resistance to M. persicae exist among the genotypes analysed. EPGs recorded from aphids on Solanum berthaultii Hawkes and Solanum tarijense Hawkes with and without glandular trichomes showed that strong surface resistance can bias EPG parameters associated with resistance located in deeper tissues. Experimental evidence is presented that the resistance to aphids in the genotypes with glandular trichomes strongly depends on these morphological structures.  相似文献   

4.
ABSTRACT. In no-choice tests, larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), avoided contact with, and were less frequently observed feeding on, excised foliage of the resistant wild potato Solanum berthaultii Hawkes than on leaves of the cultivated potato, S.tuberosum L. For older larvae, reduced feeding was a consequence of less frequent contact with S.berthaultii leaves. However, first instars appeared unable to penetrate the adhesive barrier presented by glandular trichomes of S. berthaultii , and those that remained on the leaflets fed less often than did first instars on S. tuberosum. Removal of the trichome barrier by wiping leaflets with tissue paper did not attenuate the apparent repellent effect of S. berthaulti foliage, but led to increased incidence of feeding by first instars. Inhibition of larval feeding may therefore rely on a mechanical barrier provided by the glandular trichomes of S.berthaultii.  相似文献   

5.
Glandular trichomes on foliage of the wild potato species, Solanum berthaultii Hawkes, deter oviposition by the potato tuber moth (PTM), Phthorimaea operculella Zeller and negatively affect other important performance parameters. Oviposition deterring factors are localized in the glandular trichomes of S. berthaultii. When mechanically transferred to foliage of a susceptible potato cultivar, trichome contents reduced egg laying by 97%. Removal of glandular trichomes from S. berthaultii foliage using a combination of chemical and mechanical procedures increased oviposition rates ca. 210-fold. Removal of trichomes also led to increased mobility of larvae on the leaf surface, more leaf feeding, shorter larval development and larger pupae. The resistance conferred by glandular trichomes of S. berthaultii provides an important genetic trait potentially useful for management of PTM.  相似文献   

6.
The wild Bolivian potato, Solanum berthaultii Hawkes, has been used as a source of resistance to the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say, one of the most significant pests of potato. In this study, two reciprocal backcross S. tuberosum x S. berthaultii potato progenies, BCB and BCT, were mapped with RFLP markers and screened for resistance to CPB consumption, oviposition and defoliation. The genotypic and phenotypic data were combined and analysed to locate quantitative trait loci (QTLs) for resistance to CPB. Three QTLs on three chromosomes in BCB, and two QTLs on two chromosomes in BCT influenced resistance. The QTLs were generally additive but one instance of epistasis was noted. Each QTL accounted for 4–12% of the phenotypic variation observed in resistance. In the more resistant BCB population, a three QTL model explained ca. 20% of the variation in CPB oviposition. When alleles at the three QTLs were homozygous S. berthaultii, oviposition was reduced ca. 60% compared to the heterozygotes. The QTLs for resistance to CPB were compared to those previously identified for the type A and B glandular trichomes, which have been implicated in resistance in the same progenies. Generally, the QTLs for resistance to CPB coincided with loci associated with the glandular trichomes confirming the importance of the glandular trichomes in mediating resistance. However, a relatively strong and consistent QTL for insect resistance in both BCB and BCT on chromosome 1 was observed that was not associated with any trichome traits, suggesting the trichomes may not account for all of the resistance observed in these progenies.  相似文献   

7.
This study examines the response of tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), during the initial stages of attack, to variability in trichome density and composition on foliage of Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae). Solanum berthaultii bears two types of glandular trichome (type A and type B) that together reduced oviposition by the moth. Females were often completely deterred from ovipositing on foliage with >300 trichomes per cm2. In contrast, neonate establishment on S. berthaultii was generally positively related to trichome densities, indicating that trichomes may be a poor defense against P. operculella when the moth oviposits in soil and neonate larvae select the host plant. Solanum tarijense has only one type of glandular trichome (type A) and eglandular hairs. Most eggs were deposited on the adaxial leaf surfaces that had lower trichome densities. Although the density of type A trichomes was negatively related to oviposition, high densities of hairs on the abaxial and adaxial leaf surfaces appeared to stimulate oviposition, leading to stronger positive relations between hair densities and oviposition. Larvae generally established on the abaxial surface where hair densities were greatest. Relationships between the abaxial densities of leaf hairs and neonate establishment on S. tarijense were positive. The results indicate that the responses by P. operculella to the types and density of trichomes are complex. Whereas type A and type B trichomes may act synergistically to reduce oviposition by the moth, leaf hairs do not defend against oviposition and neither leaf hairs nor type A and B trichomes reduce neonate establishment by this herbivore species.  相似文献   

8.
The trichome‐bearing wild potatoes Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae) have noted resistance to leaf‐feeding insect herbivores; however, little is known about their resistance to tuber‐feeding herbivores. This study evaluates resistance in tubers of these two species to attack by the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Tubers from a range of accessions were presented to recently emerged neonate tuber moth larvae. Resistance to neonates varied between accessions and was generally higher in accessions of S. tarijense. The contribution to observed resistance of periderm vs. cortex factors was assessed by perforating tuber periderm in paired‐tuber experiments. Across species and accessions, an average of 62% of resistance was attributed to periderm‐related factors. All larvae entered tubers through the eyes. Unidentified cortex‐related factors affected larval development time and pupal weight. Sprouting compromised resistance by reducing the protective value of the periderm. The degree of sprouting also decreased larval development times and increased pupal weights in one of two accessions examined. These results demonstrate the potential of S. berthaultii and S. tarijense as sources of tuber‐resistance and identify accessions of both species with notably high periderm‐based protection. Levels of periderm resistance were not correlated to levels of cortex resistance and represent an independent resistance source compatible with the food value of crop potato.  相似文献   

9.
The diversity and abundance of herbivores often decreases with increasing altitude. Plants are expected to respond to reduced herbivore pressure by allocating fewer resources to anti-herbivore resistance at higher altitudes. This study uses a greenhouse experiment and parallel bioassay to examine population variability in trichome-mediated defenses across a range of accessions of Solanum berthaultii Hawkes and S. tarijense Hawkes that originated from different altitudes. S. berthaultii bears two types of glandular trichomes, type A and type B, whereas S. tarijense has type A trichomes only, and hairs resembling type B trichomes that are eglandular. Both type A and type B glandular trichomes on S. berthaultii deterred ovipositing female Phthorimaea operculella (Zell.) (Lepidoptera: Gelechiidae). The density of type A, but not type B trichomes decreased with increasing altitude of origin in S. berthaultii populations. The ratio of type A to type B trichomes on the abaxial surface of S. berthaultii negatively affected oviposition and was inversely related to altitude of origin. In S. tarijense, type A trichomes deterred, but eglandular leaf hairs stimulated oviposition. Consequently, the ratio of type A trichomes to eglandular leaf hairs was negatively related to the number of eggs laid. The total numbers of trichomes per leaf generally increased with increasing altitude of origin in S. tarijense whereas the ratio of type A trichomes to eglandular hairs declined. In the oviposition bioassay, we found no direct relationship between resistance and altitude of origin, which may have been due to differences in leaf area at the time of the bioassay. Nevertheless, the results suggest that populations of both plant species that originated from higher altitudes were generally more susceptible to ovipositing P. operculella.  相似文献   

10.
The Colorado potato beetle, Leptinotarsa decemlineata Say, is the major insect pest of potato, Solanum tuberosum L., in eastern North America and is renowned for resistance development, currently resistant to >40 insecticides worldwide. Host plant resistance may assist in delaying in resistance development to insecticides. We evaluated natural host plant resistance mechanisms (glandular trichomes and Solanum chacoense Bitter-derived resistance) and engineered resistance mechanisms (Bacillus thuringiensis [Bt] Berliner cry3A and cry1Ia1) in a no-choice cage study. Six different potato lines representing four host plant resistance mechanisms were evaluated over 2 yr. Egg masses were placed in each cage (one egg mass per plant). Almost no feeding was observed in the Bt-cry3A lines, and only minor feeding was observed in the Bt-cry1Ia1 lines in either year. On the S. chacoense-derived line, there was significantly less defoliation than on either the susceptible line or the glandular trichome line in 2003. In 2004, there was significantly higher defoliation on the S. chacoense-derived line than on the susceptible line or glandular trichome line. The defoliation of the Solanum chacoense-derived line was largely due to larvae clipping the petioles, rather than consumption of the leaves. Defoliation on the glandular trichome line did not differ significantly from the defoliation of the susceptible line, suggesting glandular trichomes may not be effective in controlling larvae and preventing defoliation. This study suggested that Bt can provide high levels of resistance, but the natural resistance mechanisms tested here are variable for control of Colorado potato beetle larvae in no-choice situations.  相似文献   

11.
Damage to potatoes by Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (both Hemiptera: Aphididae) can be controlled through plant resistance. We used ethological experiments and electric penetration graph (EPG) analysis to evaluate the role of host selection in the previously assessed resistance levels of Solanum accessions: Solanum circaeifolium Bitter subsp. capsicibaccatum (Cárdenas) (PI210036), S. chomatophilum Bitter (PI243340 and PI310990), S. okadae Hawkes & Hjert. (PI458367), S. oplocense Hawkes (PI473368), S. pinnatisectum Dunal (PI186553), S. polyadenium Greenm. (PI230463), S. tarijense Hawkes (PI414150), and S. trifidum Correll (PI255538), to M. euphorbiae and M. persicae. Through multivariate analysis, we grouped behavioural variables into factors, which we related to host selection behaviours, and then evaluated whether factors varied between each accession and the susceptible S. tuberosum. None of the factors obtained by ethological experiments differed among accessions. Four of six and three of five factors obtained through EPG varied among accessions for M. euphorbiae and M. persicae, respectively, and were used to suggest resistance characteristics. The resistance to M. persicae of both S. chomatophilum accessions was associated with pathway activity disturbance. Solanum tarijense and S. polyadenium resistance to M. persicae resulted from leaf surface characteristics, which may be trichomes. Solanum oplocense and S. trifidum resistance to M. euphorbiae resulted from the wound response system, whereas S. pinnatisectum resistance may stem from nutritionally unbalanced or toxic phloem sap. Solanum polyadenium resistance to M. euphorbiae was phloem‐based. Solanum circaeifolium ssp. capsicibaccatum resistance to M. persicae, and the resistance of PI243340 S. chomatophilum and S. tarijense to M. euphorbiae were not related to host selection and therefore were presumably due to physiologically active compounds.  相似文献   

12.
The sustainable deployment of resistant crop varieties is a critical issue for the implementation of biotechnology in crop pest management. Feeding, biomass accumulation, and mortality were evaluated for susceptible, insecticide‐resistant, and Bacillus thuringiensis (Bt) Cry 3A‐selected Colorado potato beetle (Leptinotarsa decemlineata Say) (Coleoptera, Chrysomelidae) larvae fed on: cultivated potato, a Solanum chacoense line expressing leptine glycoalkaloids, a transformed line expressing Bt toxin, or the leptine line transformed to express Bt toxin. Larvae selected for resistance to Bt‐Cry3A performed better on Bt foliage, but not as well on the leptine foliage, compared to susceptible or insecticide‐resistant larvae. Neither leptine nor Bt toxin completely inhibited the feeding and growth of 3rd and 4th instars of all three strains of Colorado potato beetle. However, for all three strains of Colorado potato beetle on leptine + Bt foliage, feeding was almost zero, growth was zero or negative, and mortality was near 100%.  相似文献   

13.
The flight take-off frequency of adult Colorado potato beetles, Leptinotarsa decemlineata (Say), from potato plants, Solanum tuberosum L. 'Red Pontiac' at the bloom stage of development was 2.2-2.5-fold that of Colorado potato beetle from plants at the vegetative stage. Tests were conducted in a flight chamber over a period of 3 h. Prefeeding Colorado potato beetles for 48 h on potato plants at the bloom or at the vegetative stage before placing them into the flight chamber resulted in the same significantly higher flight take-off frequency from potato plants at the bloom stage than from plants at the vegetative stage. These results demonstrate that the factor in potato plants in bloom that stimulates the flight take-off of the Colorado potato beetle is independent of the feeding history of the beetles and begins acting only when the beetles are in the presence of the plant. According to these results, the dispersal of adult Colorado potato beetles from potato fields in bloom to younger potato fields with plants at the vegetative stage, previously reported in the literature, is at least partly explained by the effect of plant phenology on the frequency of flight take-off. Results confirm the value of planting potato fields of similar phenology over as wide an area as possible to reduce Colorado potato beetle dispersal between fields. Results also imply that staggering the planting dates of conventional potato refuge areas near Colorado potato beetle transgenic or conventionally resistant potato fields is a sound management practice, because it promotes the movement of wild beetles over to the adjacent younger resistant crops.  相似文献   

14.
Among the drimane compounds tested, the dialdehydes polygodial and warburganal were the most active as antifeedants against Colorado potato beetle larvae, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), in a dual-choice assay with potato, Solanum tuberosum L., leaf discs. Lactones were less effective. Direct observations showed that decreased feeding on leaf discs treated with polygodial and warburganal was accompanied by increased locomotry activity. Topical application of these two compounds on the insect's cuticle decreased food intake of untreated leaf discs, indicating that besides deterrent effects, toxic properties of these molecules influence feeding behaviour.  相似文献   

15.
Colorado potato beetle (Leptinotarsa decemlineata Say) adult longevity and fecundity were studied on transgenic potato clones expressing a Cry3B endotoxin of Bacillus thuringiensis (Bt). Adult longevity and fitness were studied for the first 3 weeks after emergence. Beetle reproductive biology on highly resistant clones, intermediary resistant clones and control potato plants was monitored by dissecting females after 7–15 days of feeding and also by analysing haemolymph protein content after 3 days of feeding. Feeding behaviour on transgenic plants expressing high toxin concentrations and on control plants was monitored individually for 36 newly emerged adult beetles feeding on leaf disks during the first two meals. Lethal Time50 for adult beetles feeding on transgenic clones as the sole source of food was not significantly shorter than for beetles on control clones reared in a growth chamber. Differences tended to be larger when the experiment was conducted in a greenhouse with a less optimal temperature range (LT50 = 9.52 and 10.45 days for two transgenic clones and 13.86 for control). In contrast, female egg production on transgenic plants was almost totally inhibited. Dissection studies indicated that adult males living on high-level Bt-expressing transgenic potatoes were still able to mate and produce mobile sperm, but the females were impaired in their reproductive ability since their ovaries were generally not fully developed. An examination of the haemolymph revealed the protein concentration in females living on transgenic plants to be dramatically reduced ( 50%), and electrophoresis showed a reduced content of vitellogenin in these samples.Feeding behaviour of adult Colorado potato beetles was not affected by the different food plants; this indicates that transgenic potato plants were readily accepted as host plants by beetles. The effects of these findings on the use of transgenic plants as a means of L. decemlineata control are discussed.  相似文献   

16.
Establishing rates of injury to plants and the physiological impact of this injury provides essential data in the development of economic injury levels, but variation of sex effects is not often considered. Here, we examined injury by the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), larvae and adult males and females on potato, Solanum tuberosum L. (Solanaceae). Specifically, we looked for adult sex differences between males and females in injury rates (= leaf consumption rates), and examined the impact of all types of injury (larval, adult male, and adult female) on gas exchange parameters of remaining potato leaf tissue. Experiments were conducted in the field and in growth chambers on Frito‐Lay proprietary and Pike chipping‐potato varieties at pre‐blooming and blooming stages. We found no change in photosynthetic rates on remaining (uninjured) leaf tissue infested with male, female, or fourth‐stage larva of Colorado potato beetle. However, when the midrib was cut in trials with male beetles, the remaining tissue above the injury exhibited photosynthetic rate reductions as a result of stomatal limitations. These findings are consistent with the pattern that we and other researchers have observed with gross tissue removal by various insects on other plant species. Adult females consumed more tissue than males, and temperature was positively correlated with feeding rates for both sexes. Sex‐related differences in feeding rate are most important to studies quantifying consumption rates for economically important species because of its potential impact on resulting economic injury level calculations.  相似文献   

17.
The prefeeding behaviours of adult crucifer flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae: Alticinae), were determined on seedlings of the host plant, Brassica napus, and compared to behaviors on seedlings of the nonhost crucifers, Crambe abyssinica, Sinapis alba, and Camelina sativa. Three stages of prefeeding behaviour, i.e., acclimation, stimulation, and initial feeding, were distinguished through observation of filmed beetles. Both antennal and tarsal chemoreceptors are important in determination of host plant quality by the crucifer flea beetle. The results of this study suggest that the sequence of prefeeding behaviors plays a crucial role in the onset of feeding. Differences in time spent on plant tissue and the frequency and duration of prefeeding behaviors provide insight into possible mechanisms of resistance to flea beetles in the non-Brassica crucifers. The nonpreferred hosts C. abyssinica and S. alba contain deterrent phytochemicals that partially inhibit feeding. These deterrent compounds appear to be volatile in nature in S. alba but nonvolatile in C. abyssinica. CFB resistance in the nonhost C. sativa may result from either the presence of repellent or the absence of stimulatory volatile phytochemicals.  相似文献   

18.
The defensive mechanisms of the wild potato, solanum berthaultii Hawkes, to larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say), were studied by selective removal of glandular trichomes and trichome exudates from leaflets, and by comparing performance on S. berthaultii and on the cultivated potato, S. tuberosum L., which lacks defensively active type A and B glandular trichomes. Removal of type A trichomes increased the proportion of larvae that fed on S. berthaultii. Removal of the exudate from type B trichomes increased the proportion of larvae that fed and led to a decrease in mortality. The predominant active compounds in type B exudate, i.e. fatty acid esters of sucrose, were only effective in the presence of type A trichomes. Sucrose esters did not affect larval feeding on S. tuberosum leaflets or on S. berthaultii leaf discs from which the type A trichomes had been removed. Growth of surviving larvae was not significantly affected by removing type A trichomes or type B exudate. Growth of larvae was significantly increased when S. berthaultii leaflets were presented in artificial diet which eliminated the physical barrier of the type B stalks. Growth was no different on artificial diet containing either S. berthaultii or S. tuberosum leaf material (fresh or lyophilized powder) but was poorer on these diets than on S. tuberosum leaflets. The presence of type A trichomes is a fundamental requirement for expression of S. berthaultii resistance to L1 L. decemlineata. Type B droplets containing sucrose esters increase the expression of resistance in the presence of defensively-active type A trichomes.
Résumé Les mécanismes de défense de la pomme de terre sauvage, S. berthaultii Hawkes, aux larves de Leptinotarsa decemlineata Say, ont été étudiés par ablation sélective des trichomes glandulaires et par l'élimination de leur exsudat des folioles, et par comparaison avec S. tuberosum L. qui a perdu les trichomes glandulaires défensifs A et B. L'ablation des trichomes A a augmenté la proportion de larves ayant consommé S. berthaultii. L'élimination de l'exsudat des trichomes B a augmenté la proportion de consommatrices et réduit la mortalité. Les principaux composés actifs de l'exsudat B, c'est-à-dire des esters d'acides gras de sucrose, n'étaient actifs qu'en présence de trichomes A. Les esters de sucrose n'ont pas modifié la consommation larvaire sur folioles de S. tuberosum, ou sur disques de feuilles de S. berthaultii dont les trichomes A avaient été enlevés. La croissance des larves survivantes n'a pas été modifiée significativement par l'ablation des trichomes A ou l'élimination de l'exsudat de B. La croissance des larves a été significativement augmentée quand les folioles de S. berthaultii ont été incorporés dans l'aliment artificiel après élimination de la barrière physique due aux pédoncules B. La croissance a été de même importance sur aliments artificiels contenant des feuilles (fraiches ou en poudre lyophylisée) de S. berthaultii ou de S. tuberosum, mais plus faible que sur folioles de S. tuberosum. La présence de trichomes A est indispensable à la résistance de S. berthaultii aux L, de L. decemlineata. Les gouttelettes de type B contenant des esters de sucrose augmentent l'expression de la résistance en présence d'une défense active par trichomes A.
  相似文献   

19.
Survival and fecundity of Colorado potato beetle adults, Leptinotarsa decemlineata (Say), that had or had not fed previously on non-transgenic potato before exposure to transgenic potato containing the Bacillus thuringiensis subsp. tenebrionis Cry3A toxin (Bt) was investigated. In the laboratory, < 5% of first-generation adults survived after two weeks when restricted to Bt foliage since eclosion, but over 85% of adults that had fed initially on non-Bt potato survived exposure to Bt potato for two weeks. In field experiments, less than 0.5% of adults that were exclusively provided Bt potato plants survived overwinter, whereas 44% to 57% survived overwinter when fed non-Bt potato plants for two weeks before being provided Bt potato as a final pre-overwintering host. Survival through the winter increased as the duration of initial feeding on non-Bt potato increased and was similar for beetles provided either tubers or Bt potato plants as a final pre-overwintering host. Only overwintered beetles that fed initially on non-Bt potato before encountering either tubers or Bt potato as a final pre-overwintering host laid eggs the following spring. Survival and reproduction of potato beetle adults after colonizing Bt potato fields should not be adversely affected as long as they have had sufficient time to feed initially on non-Bt potato. Implications for how potato production practices in the Mid-Atlantic US may affect the utility of general resistance management plans for Bt potato are discussed.  相似文献   

20.
Abstract 1 Willows are frequently attacked and defoliated by adult leaf beetles (Phratora vulgatissima L.) early in the season and the plants are then attacked again when new larvae emerge. The native willow Salix cinerea has previously been shown to respond to adult grazing by producing new leaves with an increased trichome density. Subsequent larval feeding was reduced on new leaves. This type of induced plant response may reduce insect damage and could potentially be utilized for plant protection in agricultural systems. 2 Here, we investigated if the willow species most commonly used for biomass production in short rotation coppice, Salix viminalis, also responds to adult beetle grazing by increasing trichome density. Larval performance and feeding behaviour on plants previously exposed to adult beetles was compared with that on undefoliated control plants in a greenhouse. 3 We found an overall decrease in trichome density within all the plants (i.e. trichome density was lower on new leaves compared to that for older basal leaves on S. viminalis). However, leaves of beetle defoliated plants had a higher trichome density compared to control plants. Larval growth and feeding was not affected by this difference between treatments. Larvae appeared to remove trichomes when feeding on S. viminalis, a behaviour that might explain the lack of difference between treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号