首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The inside-out signaling involved in the activation of LFA-1-mediated cell adhesion is still poorly understood. Here we examined the role of the SH2-containing inositol phosphatase (SHIP), a major negative regulator of intracellular signaling, in this process. Wild-type SHIP and a phosphatase-deficient mutant SHIP were overexpressed in the murine myeloid cell line, DA-ER, and the effects on LFA-1-mediated cell adhesion to ICAM-1 (CD54) were tested. Overexpression of wild-type SHIP significantly enhanced cell adhesion to immobilized ICAM-1, and PMA, IL-3, or erythropoietin further augmented this adhesion. In contrast, phosphatase dead SHIP had no enhancing effects. Furthermore, PMA-induced activation of LFA-1 on DA-ER cells overexpressing wild-type SHIP was dependent on protein kinase C but independent of mitogen-activated protein kinase activation, whereas cytokine-induced activation was independent of protein kinase C and mitogen-activated protein kinase activation but required phosphatidylinositol-3 kinase activation. These results suggest that SHIP may regulate two distinct inside-out signaling pathways and that the phosphatase activity of SHIP is essential for both of them.  相似文献   

3.
The EL4 murine lymphoma cell line exists in variant phenotypes that differ with respect to responses to the tumor promoter phorbol 12-myristate 13-acetate (PMA1). Previous work showed that “PMA-sensitive” cells, characterized by a high magnitude of PMA-induced Erk activation, express RasGRP, a phorbol ester receptor that directly activates Ras. In “PMA-resistant” and “intermediate” EL4 cell lines, PMA induces Erk activation to lesser extents, but with a greater response in intermediate cells. In the current study, these cell lines were used to examine mechanisms of Raf-1 modulation. Phospho-specific antibodies were utilized to define patterns and kinetics of Raf-1 phosphorylation on several sites. Further studies showed that Akt is constitutively activated to a greater extent in PMA-resistant than in PMA-sensitive cells, and also to a greater extent in resistant than intermediate cells. Akt negatively regulates Raf-1 activation (Ser259), partially explaining the difference between resistant and intermediate cells. Erk activation exerts negative feedback on Raf-1 (Ser289/296/301), thus resulting in earlier termination of the signal in cells with a higher level of Erk activation. RKIP, a Raf inhibitory protein, is expressed at higher levels in resistant cells than in sensitive or intermediate cells. Knockdown of RKIP increases Erk activation and also negative feedback. In conclusion, this study delineates Raf-1 phosphorylation events occurring in response to PMA in cell lines with different extents of Erk activation. Variations in the levels of expression and activation of multiple signaling proteins work in an integrated fashion to modulate the extent and duration of Erk activation.  相似文献   

4.
The mechanisms that regulate nitric oxide (NO)-induced apoptosis, especially in T cell apoptosis, are largely uncharacterized. Here, we report that protection from NO-induced cell death by phorbol 12-myristate 13-acetate (PMA) is dependent on both p38 and extracellular signal-regulated kinase (ERK) activation. Exposure of Molt4 cells to NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) induced both apoptotic and necrotic modes of cell death along with a sustained increase in p38 kinase phosphorylation. However, the p38 inhibitor SB202190 only slightly protected Molt4 cells from NO toxicity. In contrast, PMA rapidly phosphorylated both p38 kinase and ERK, and the phosphorylation statuses were not altered in the presence of SNAP. Interestingly, although each mitogen-activated protein kinase (MAPK) inhibitor by itself had only a modest effect, the combination of inhibitors for both MAPKs almost completely abolished the protective effect of PMA. Furthermore, dominant negative or catalytically inactive variants that modulate p38 and ERK mimicked the effects of MAPK inhibitors. We located the action of p38 and ERK upstream of the p53/mitochondrial membrane potential loss and caspases cascade. Together, these findings suggest that the PMA-induced activations of ERK and p38 kinase are parallel events that are both required for inhibition of NO-induced death of Molt4 cells.  相似文献   

5.
In vitromegakaryocytic differentiation of the pluripotent K562 human leukemia cell line is induced by PMA. Treatment of K562 cells with PMA results in growth arrest, polyploidy, morphological changes, and increased cell–cell and cell–substrate adhesion. These PMA-induced changes in K562 cells are preceded by a rapid rise in the activity of MEK (MAP kinase/extracellular regulated kinases) that leads to a sustained activation of ERK2 (extracellular regulated kinase; MAPK). Blockade of MEK1 activation by PD098059, a recently described specific MEK inhibitor [D. T. Dudleyet al.(1995).Proc. Natl. Acad. Sci. USA92, 7686–7689], reverses both the growth arrest and the morphological changes of K562 cells induced by PMA treatment. These changes are not associated with a disruption of PMA-induced down-regulation of BCR-ABL kinase or early integrin signaling events but are associated with a block of the cell-surface expression of the gpIIb/IIIa (CD41) integrin, a cell marker of megakaryocytic differentiation. These results demonstrate that the PMA-induced signaling cascade initiated by protein kinase C activation requires the activity of the MEK/ERK signaling complex to regulate cell cycle arrest, thus regulating the program that leads to the cell-surface expression of markers associated with megakaryocytic differentiation.  相似文献   

6.
Hepatocyte growth factor (HGF) modulates cell adhesion, migration, and branching morphogenesis in cultured epithelial cells, events that require regulation of cell-matrix interactions. Using mIMCD-3 epithelial cells, we studied the effect of HGF on the focal adhesion proteins, focal adhesion kinase (FAK) and paxillin and their association. HGF was found to increase the tyrosine phosphorylation of paxillin and to a lesser degree FAK. In addition, HGF induced association of paxillin and activated ERK, correlating with a gel retardation of paxillin that was prevented with the ERK inhibitor U0126. The ability of activated ERK to phosphorylate and induce gel retardation of paxillin was confirmed in vitro in both full-length and amino-terminal paxillin. Several potential ERK phosphorylation sites in paxillin flank the paxillin-FAK association domains, so the ability of HGF to regulate paxillin-FAK association was examined. HGF induced an increase in paxillin-FAK association that was inhibited by pretreatment with U0126 and reproduced by in vitro phosphorylation of paxillin with ERK. The prevention of the FAK-paxillin association with U0126 correlated with an inhibition of the HGF-mediated FAK tyrosine phosphorylation and inhibition of HGF-dependent cell spreading and adhesion. An examination of cellular localization of FAK and paxillin demonstrated that HGF caused a condensation of focal adhesion complexes at the leading edges of cell processes and FAK-paxillin co-localization in these large complexes. Thus, these data suggest that HGF can induce serine/threonine phosphorylation of paxillin most probably mediated directly by ERK, resulting in the recruitment and activation of FAK and subsequent enhancement of cell spreading and adhesion.  相似文献   

7.
The experiments presented here were designed to examine the contribution of the extracellular signal-regulated mitogen-activated protein kinases (ERKs) to the tyrosine phosphorylation of the focal adhesion proteins p125(Fak), p130(Cas), and paxillin induced by G protein-coupled receptors (GPCRs) and tyrosine kinase receptors in Swiss 3T3 cells. Stimulation of these cells with bombesin, lysophosphatidic acid (LPA), endothelin, and platelet-derived growth factor (PDGF) led to a marked increase in the tyrosine phosphorylation of these focal adhesion proteins and in ERK activation. Exposure of the cells to two structurally unrelated mitogen-activated protein kinase or ERK kinase (MEK) inhibitors, PD98059 and U0126, completely abrogated ERK activation but did not prevent tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin. Furthermore, different dose-response relationships were obtained for tyrosine phosphorylation of focal adhesion proteins and for ERK activation in response to PDGF. Putative upstream events in the activation of focal adhesion proteins including actin cytoskeletal reorganization and myosin light chain (MLC) phosphorylation were also not prevented by inhibition of ERK activation. Thus, our results demonstrate that the activation of the ERK pathway is not necessary for the increase of the tyrosine phosphorylation of p125(Fak), p130(Cas), and paxillin induced by either GPCRs or tyrosine kinase receptors in Swiss 3T3 cells.  相似文献   

8.
The signals involved in restitution during mucosal healing are poorly understood. We compared focal adhesion kinase (FAK) and paxillin protein and phosphorylation, extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 activation, as well as FAK and paxillin organization in static and migrating human intestinal Caco-2 cells on matrix proteins and anionically derivatized polystyrene dishes (tissue culture plastic). We also studied effects of FAK, ERK, and p38 blockade in a monolayer-wounding model. Compared with static cells, cells migrating across matrix proteins matrix-dependently decreased membrane/cytoskeletal FAK and paxillin and cytosolic FAK. Tyrosine phosphorylated FAK and paxillin changed proportionately to FAK and paxillin protein. Conversely, cells migrating on plastic increased FAK and paxillin protein and phosphorylation. Migration matrix-dependently activated p38 and inactivated ERK1 and ERK2. Total p38, ERK1, and ERK2 did not change. Caco-2 motility was inhibited by transfection of FRNK (the COOH-terminal region of FAK) and PD-98059, a mitogen-activated protein kinase-ERK kinase inhibitor, but not by SB-203580, a p38 inhibitor, suggesting that FAK and ERK modulate Caco-2 migration. In contrast to adhesion-induced phosphorylation, matrix may regulate motile intestinal epithelial cells by altering amounts and distribution of focal adhesion plaque proteins available for phosphorylation as well as by p38 activation and ERK inactivation. Motility across plastic differs from migration across matrix.  相似文献   

9.
In late pregnancy rapidly increasing fetal growth dramatically increases uterine wall tension. This process has been implicated in the activation of the myometrium for labor, but the mechanisms involved are unclear. Here, we tested, using a rat model, the hypothesis that gestation-dependent stretch, via activation of focal adhesion signaling, contributes to the published activation of myometrial ERK at the end of pregnancy. Consistent with this hypothesis, we show here that ERK is targeted to adhesion plaques during late pregnancy. Furthermore, myometrial stretch triggers a dramatic increase in myometrial contractility and ERK and caldesmon phosphorylation, confirming the presence of stretch sensitive myometrial signaling element. Screening by anti-phosphotyrosine immunoblotting for focal adhesion signaling in response to stretch reveals a significant increase in the tyrosine phosphorylated bands identified as focal adhesion kinase (FAK), A-Raf, paxillin, and Src. Pretreatment with PP2, a Src inhibitor, significantly suppresses the stretch-induced increases in FAK, paxillin, Src, ERK and caldesmon phosphorylation and myometrial contractility. Thus, focal adhesion-Src signaling contributes to ERK activation and promotes contraction in late pregnancy. These results point to focal adhesion signaling molecules as potential targets in the modulation of the myometrial contractility and the onset of labor.  相似文献   

10.
MY Chang  DY Huang  FM Ho  KC Huang  WW Lin 《PloS one》2012,7(7):e40999
PKC plays a pivotal role in mediating monocyte adhesion; however, the underlying mechanisms of PKC-mediated cell adhesion are still unclear. In this study, we elucidated the signaling network of phorbol ester PMA-stimulated human monocyte adhesion. Our results with pharmacological inhibitors suggested the involvement of AMPK, Syk, Src and ERK in PKC-dependent adhesion of THP-1 monocytes to culture plates. Biochemical analysis further confirmed the ability of PMA to activate these kinases, as well as the involvement of AMPK-Syk-Src signaling in this event. Direct protein interaction between AMPK and Syk, which requires the kinase domain of AMPK and linker region of Syk, was observed following PMA stimulation. Notably, we identified Syk as a novel downstream target of AMPK; AICAR can induce Syk phosphorylation at Ser178 and activation of this kinase. However, activation of AMPK alone, either by stimulation with AICAR or by overexpression, is not sufficient to induce monocyte adhesion. Studies further demonstrated that PKC-mediated ERK signaling independent of AMPK activation is also involved in cell adhesion. Moreover, AMPK, Syk, Src and ERK signaling were also required for PMA to induce THP-1 cell adhesion to endothelial cells as well as to induce adhesion response of human primary monocytes. Taken together, we propose a bifurcated kinase signaling pathway involved in PMA-mediated adhesion of monocytes. PKC can activate LKB1/AMPK, leading to phosphorylation and activation of Syk, and subsequent activation of Src and FAK. In addition, PKC-dependent ERK activation induces a coordinated signal for cytoskeleton rearrangement and cell adhesion. For the first time we demonstrate Syk as a novel substrate target of AMPK, and shed new light on the role of AMPK in monocyte adhesion, in addition to its well identified functions in energy homeostasis.  相似文献   

11.
Paxillin has been recognized as a focal adhesion adapter protein that participates in the integrin-mediated signaling. An earlier study [Ogawa et al. Biochim. Biophys. Acta 1519 (2001) 235] found that frog paxillin was expressed in the kidney epithelial cell line A6 and localized in the nucleus. Here, in this study, we have found that the expression of frog paxillin is up-regulated in the S phase of cell cycle. The protein became phosphorylated on tyrosine when the cells were grown on vitronectin; the tyrosine phosphorylation was not detectable when the cells were cultured on fibronectin, laminin or poly-D-lysine. On the other hand, MAP kinase was revealed to phosphorylate frog paxillin on serine. Both phosphorylation events, namely on tyrosine and serine, were essential for the nuclear translocation of this protein. Our results suggest that the integrin-mediated signaling pathway and the MAP kinase pathway meet at paxillin.  相似文献   

12.
Bim, a "BH3-only" protein, is expressed de novo following withdrawal of serum survival factors and promotes cell death. We have shown previously that activation of the ERK1/2 pathway promotes phosphorylation of Bim(EL), targeting it for degradation via the proteasome. However, the nature of the kinase responsible for Bim(EL) phosphorylation remained unclear. We now show that Bim(EL) is phosphorylated on at least three sites in response to activation of the ERK1/2 pathway. By using the peptidylprolyl isomerase, Pin1, as a probe for proline-directed phosphorylation, we show that ERK1/2-dependent phosphorylation of Bim(EL) occurs at (S/T)P motifs. ERK1/2 phosphorylates Bim(EL), but not Bim(S) or Bim(L), in vitro, and mutation of Ser(65) to alanine blocks the phosphorylation of Bim(EL) by ERK1/2 in vitro and in vivo and prevents the degradation of the protein following activation of the ERK1/2 pathway. We also find that ERK1/2, but not JNK, can physically associate with GST-Bim(EL), but not GST-Bim(L) or GST-Bim(S), in vitro. ERK1/2 also binds to full-length Bim(EL) in vivo, and we have localized a potential ERK1/2 "docking domain" lying within a 27-amino acid stretch of the Bim(EL) protein. Our findings provide new insights into the post-translational regulation of Bim(EL) and the role of the ERK1/2 pathway in cell survival signaling.  相似文献   

13.
14.
Cell adhesion-dependent activation of ERK1/2 has been linked functionally to focal adhesion dynamics. We previously reported that in adherent vascular smooth muscle (VSM) cells, CaMKII mediates ERK1/2 activation in response to Ca(2+)-mobilizing stimuli. In the present study, we tested whether CaMKII regulates ERK1/2 signaling in response to VSM cell adhesion. Using an antibody that specifically recognizes CaMKII autophosphorylated on Thr(287), we determined that CaMKII is rapidly activated (within 1 min) after the adherence of cells on multiple ECM substrates. Activation of CaMKII on fibronectin was unaffected in cells overexpressing focal adhesion kinase (FAK)-related nonkinase (FRNK), an endogenous inhibitor of FAK. Furthermore, CaMKII was rapidly and robustly activated in VSM cells plated on poly-l-lysine. These results suggest that adhesion-dependent CaMKII activation is integrin independent. Adhesion-dependent FAK activation on fibronectin was not affected in cells treated with the selective CaMKII inhibitor KN-93 (30 muM) or in cells in which the expression of CaMKII with small interfering RNA (siRNA) was suppressed, although tyrosine phosphorylation of paxillin was inhibited in CaMKII-delta(2)-suppressed cells. Sustained ERK1/2 activation that was dependent on FAK activation (inhibited by FRNK) was also attenuated by CaMKII inhibition or siRNA-mediated gene silencing. Rapid ERK1/2 activation that preceded FAK and paxillin activation was detected upon VSM cell adhesion to poly-l-lysine, and this response was inhibited by CaMKII gene silencing. These results indicate that integrin-independent CaMKII activation is an early signal during VSM cell adhesion that positively modulates ERK1/2 signaling through FAK-dependent and FAK-independent mechanisms.  相似文献   

15.
Integrin-initiated extracellular signal-regulated kinase (ERK) activation by matrix adhesion may require focal adhesion kinase (FAK) or be FAK-independent via caveolin and Shc. This remains controversial for fibroblast and endothelial cell adhesion to fibronectin and is less understood for other matrix proteins and cells. We investigated Caco-2 intestinal epithelial cell ERK activation by collagen I and IV, laminin, and fibronectin. Collagens or laminin, but not fibronectin, stimulated tyrosine phosphorylation of FAK, paxillin, and p130(cas) and activated ERK1/2. Shc, tyrosine-phosphorylated by matrix adhesion in many cells, was not phosphorylated in Caco-2 cells in response to any matrix. Caveolin expression did not affect Caco-2 Shc phosphorylation in response to fibronectin. FAK, ERK, and p130(cas) tyrosine phosphorylation were activated after 10-min adhesion to collagen IV. FAK activity increased for 45 min after collagen IV adhesion and persisted for 2 h, while p130(cas) phosphorylation increased only slightly after 10 min. ERK activity peaked at 10 min, declined after 30 min, and returned to base line after 1 h. Transfection with FAK-related nonkinase, but not substrate domain deleted p130(cas), strongly inhibited ERK2 activation in response to collagen IV, indicating Caco-2 ERK activation is at least partly regulated by FAK.  相似文献   

16.
Cells transformed by Ras and Raf display dramatic alterations in cell morphology, adhesion, and intracellular architecture. Consequently, we investigated whether Ras or Raf might influence the behavior of proteins known to be involved in the assembly and integrity of focal adhesion complexes that play a crucial role in many of these processes. We identified Raf-induced serine phosphorylation of the adaptor protein paxillin in a variety of cell types. Raf-induced paxillin serine phosphorylation had no effect on paxillin tyrosine phosphorylation and occurred regardless of whether cells were attached or maintained in suspension. Two sites of serine phosphorylation--S126 and S130--were identified. Mutation of these serines to alanine, either alone or in combination, inhibited the ability of Raf to induce paxillin phosphorylation. These data indicate that paxillin is a target for phosphorylation downstream of the Ras-activated Raf-->MEK pathway. However, we have no evidence to suggest that ERK1/2 are the kinases responsible for Raf-induced paxillin phosphorylation. Furthermore, we did not detect any alterations in the binding of paxillin to a number of focal adhesion proteins following either activation of the Raf-->MEK-->ERK pathway or expression of the S126A/S130A form of paxillin in mammalian cells.  相似文献   

17.
Integrins coordinate spatial signaling events essential for cell polarity and directed migration. Such signals from alpha4 integrins regulate cell migration in development and in leukocyte trafficking. Here, we report that efficient alpha4-mediated migration requires spatial control of alpha4 phosphorylation by protein kinase A, and hence localized inhibition of binding of the signaling adaptor, paxillin, to the integrin. In migrating cells, phosphorylated alpha4 accumulated along the leading edge. Blocking alpha4 phosphorylation by mutagenesis or by inhibition of protein kinase A drastically reduced alpha4-dependent migration and lamellipodial stability. alpha4 phosphorylation blocks paxillin binding in vitro; we now find that paxillin and phospho-alpha4 were in distinct clusters at the leading edge of migrating cells, whereas unphosphorylated alpha4 and paxillin colocalized along the lateral edges of those cells. Furthermore, enforced paxillin association with alpha4 inhibits migration and reduced lamellipodial stability. These results show that topographically specific integrin phosphorylation can control cell migration and polarization by spatial segregation of adaptor protein binding.  相似文献   

18.
In response to treatment with phorbol-12-myristate-13-acetate (PMA), the half-population of erythromyeloblast D2 cells, a cytokine-independent variant of TF-1 cells, displayed adhesion and differentiated into a monocyte/macrophage-like morphology, while the other half-population remained in suspension and underwent apoptosis. Expression of the cell cycle inhibitor p21(Cip1/Waf1) was induced after PMA treatment in the adherent cells but not in the proapoptotic cells. We investigated the mechanism responsible for the impairment of p21(Cip1/Waf1) induction in PMA-induced proapoptotic cells. We demonstrated that in PMA-induced adherent cells, upregulation of p21(Cip1/Waf1) requires the activation and nuclear translocation of phosphorylated extracellular signal-regulated kinase (phospho-ERK). Although ERK was phosphorylated to comparable levels in PMA-induced proapoptotic and adherent cells, nuclear distribution of phospho-ERK was seen only in the adherent, not in the proapoptotic cells. We also found that only PMA-induced proapoptotic cells contained the phosphorylated form of myosin light chain, which is dependent on Rho-associated kinase (ROCK) activation, and that expression of a dominant-active form of ROCK suppressed activation of the p21(Cip1/Waf1) promoter during PMA induction. Finally, we demonstrated that inhibition of ROCK restores nuclear distribution of phospho-ERK and activation of p21(Cip1/Waf1) expression. Based on these findings, we propose that a ROCK-mediated signal is involved in interfering with the process of ERK-mediated p21(Cip1/Waf1) induction in PMA-induced proapoptotic TF-1 and D2 cells.  相似文献   

19.
The extracellular signal-regulated kinases 1/2 (ERK1/2) are serine/threonine-selective protein kinases involved in proliferation and differentiation of cells, including thymocytes. The requirement of ERK1/2 for thymocyte differentiation and maturation has been well established; however, their role in regulating thymocyte survival and apoptosis has not been resolved.Here, we asked whether ERK1/2 affected thymocyte survival in vitro in response to apoptotic stimuli. The results show that phorbol 12-myristate 13-acetate (PMA) treatment (with or without ionomycin) and serum starvation (s/s) induced sustained ERK1/2 activation in murine thymocytes. Importantly, pharmacological treatment of thymocytes with the MEK inhibitor UO126 revealed that PMA-induced ERK1/2 activation was proapoptotic, whereas serum starvation-induced ERK1/2 activation inhibited apoptosis and promoted cell survival. While basal MEK activity was required for both s/s- and PMA-induced ERK1/2 activation, MEK activity increased only in response to PMA. The results show that the suppression of ERK1/2 phosphatases was responsible for s/s-induced sustained ERK1/2 activation. Unexpectedly, neither s/s-induced proapoptotic nor PMA-induced anti-apoptotic functions of ERK1/2 depended on the Bcl-2 family phosphoprotein BimEL, which was previously implicated in thymocyte apoptosis. Lastly, etoposide treatment of immature thymocytes induced both p53 and ERK1/2 activation, but ERK1/2 activity did not affect the phosphorylation and stabilization of p53. Thus, ERK1/2 has a dual role in promoting cell survival and cell death in thymocytes in the context of different stimuli.  相似文献   

20.
Interaction between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) plays an important role in vascular biology. Cell adhesion to the extracellular matrix provides critical environmental information necessary for cell migration, proliferation, differentiation and survival. In this study, the role of VSMCs in EC adhesion was demonstrated by using a co-culture system. It was shown that the co-cultured VSMCs significantly increased the number of adherent ECs, and induced an increase of total focal adhesion area in ECs. These changes were associated with a low microtubule-to-tubulin ratio, and activation of extracellular signal-regulated kinase (ERK) and paxillin. Both the EC adhesion state and activation of the ERK/paxillin pathway by the co-cultured VSMCs could be inhibited by trichostatin A (TSA). As an inhibitor of histone deacetylase, TSA acts by modulating microtubule polymerization state. Taken together, these data suggest that the co-cultured VSMCs promote EC adhesion by modulating the microtubule cytoskeleton polymerization state, which in turn activates the ERK pathway and up-regulates phosphorylated paxillin expression to accelerate focal adhesion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号