首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proximal mouse Chromosome (Chr) 16 shows conserved synteny with human Chrs 16, 8, 22, and 3. The mouse Chr 16/human Chr 22 conserved synteny region includes the DiGeorge/Velocardiofacial syndrome region of human Chr 22q11.2. A physical map of the entire mouse Chr 16/human Chr 22 region of conserved synteny has been constructed to provide a substrate for gene discovery, genomic sequencing, and animal model development. A YAC contig was constructed that extends ca. 5.4 Mb from a region of conserved synteny with human Chr 8 at Prkdc through the region conserved with human Chr 3 at DVL3. Sixty-one markers including 37 genes are mapped with average marker spacing of 90 kb. Physical distance was determined across the 2.6-Mb region from D16Mit74 to Hira with YAC fragmentation. The central region from D16Jhu28 to Igl-C1 was converted into BAC and PAC clones, further refining the physical map and providing sequence-ready template. The gene content and borders of three blocks of conserved linkage between human Chr 22q11.2 mouse Chr 16 are refined. Received: 4 November 1998 / Accepted: 21 December 1998  相似文献   

2.
3.
An examination of the synteny blocks between mouse and human chromosomes aids in understanding the evolution of chromosome divergence between these two species. We comparatively mapped the human (HSA) Chromosome (Chr) 14q11.2-q13 cytogenetic region with the intervals of orthologous genes on mouse (MMU) chromosomes. A lack of conserved gene order was identified between the human cytogenetic region and the interval of orthologs on MMU 12. The evolutionary breakpoint junction was defined within 2.5 Mb, where the conserved synteny of genes on HSA 14 changes from MMU 12 to MMU 14. At the evolutionary breakpoint junction, a human EST (GI: 1114654) with identity to the human and mouse BCL2 interacting gene, BNIP3, was mapped to mouse Chr 3. New gene homologs of LAMB1, MEOX2, NRCAM, and NZTF1 were identified on HSA 7 and on the proximal cytogenetic region of HSA 14 by mapping mouse genes recently reported to be genetically linked within the relevant MMU 12 interval. This study contributes to the identification of homology relationships between the genes of HSA 14q11.2-q13 and mouse Chr 3, 12, and 14. Received: 16 March 2000 / Accepted: 16 June 2000  相似文献   

4.
Inbred LEW/N rats are relatively susceptible, while histocompatible inbred F344/N rats are relatively resistant to development of a wide variety of inflammatory diseases in response to a range of pro-inflammatory stimuli. In a LEW/N vs. F344/N F2 intercross, we identified a quantitative trait locus (QTL) on Chr 10 that protects in a dominant fashion against the exudate volume component of innate inflammation in the F344/N rat, as well as a suggestive QTL on Chr 2 near the Fibrinogen cluster region. The exudate volume linkage region on Chr 10 may be similar to one of the multiple regions found to link to inflammatory arthritis phenotypes in other crosses. The suggestive linkage on Chr 2 has not been previously reported and does not seem to contribute to this phenotype in the same manner as the QTL on Chr 10. These findings are consistent with the hypothesis that the innate exudate volume trait is a sub-phenotype of more complex inflammatory phenotypes, such as arthritis, and genes within the Chr 10 linkage region could account for differences in this non-specific acute phase component of the inflammatory response. Since the rat Chr 10 exudate volume linkage region we have identified is syntenic with a region of human Chr 17 that has been shown to link to a variety of autoimmune/inflammatory diseases, including insulin-dependent diabetes mellitus, multiple sclerosis, and psoriasis, identification of genes within this linkage region will shed light on genes relevant to the earliest inflammatory component and to susceptibility and resistance to such human autoimmune/inflammatory diseases. Received: 4 August 1998 / Accepted: 4 December 1998  相似文献   

5.
To determine chromosome positions for 10 mouse phospholipase C (PLC) genes, we typed the progeny of two sets of genetic crosses for inheritance of restriction enzyme polymorphisms of each PLC. Four mouse chromosomes, Chr 1, 11, 12, and 19, contained single PLC genes. Four PLC loci, Plcb1, Plcb2, Plcb4, and Plcg1, mapped to three sites on distal mouse Chr 2. Two PLC genes, Plcd1 and Plcg2, mapped to distinct sites on Chr 8. We mapped the human homologs of eight of these genes to six chromosomes by analysis of human × rodent somatic cell hybrids. The map locations of seven of these genes were consistent with previously defined regions of conserved synteny; Plcd1 defines a new region of homology between human Chr 3 and mouse Chr 8. Received: 24 January 1996 / Accepted: 2 April 1996  相似文献   

6.
7.
Thomas  James W. 《Mammalian genome》2003,14(10):673-678
Comparative mapping and sequencing of the mouse and human genomes have defined large, conserved chromosomal segments in which gene content and order are highly conserved. These regions span megabase-sized intervals and together comprise the vast majority of both genomes. However, the evolutionary relationships among the small remaining portions of these genomes are not as well characterized. Here we describe the sequencing and annotation of a 341-kb region of mouse Chr 2 containing nine genes, including biliverdin reductase A (Blvra), and its comparison with the orthologous regions of the human and rat genomes. These analyses reveal that the known conserved synteny between mouse Chromosome (Chr) 2 and human Chr 7 reflects an interval containing one gene (Blvra/BLVRA) that is, at most, just 34 kb in the mouse genome. In the mouse, this segment is flanked proximally by genes orthologous to human chromosome 15q21 and distally by genes orthologous to human Chr 2q11. The observed differences between the human and mouse genomes likely resulted from one or more rearrangements in the rodent lineage. In addition to the resulting changes in gene order and location, these rearrangements also appear to have included genomic deletions that led to the loss of at least one gene in the rodent lineage. Finally, we also have identified a recent mouse-specific segmental duplication. These finding illustrate that small genomic regions outside the large mouse–human conserved segments can contain a single gene as well as sequences that are apparently unique to one genome. The nucleotide sequence data reported in this paper have been submitted to GenBank and assigned the accession numbers AC074224 and AC074041.  相似文献   

8.
Alterations in the chromosomal region 11q13–11q14 are involved in several pathologies in which most of the key genes remain to be identified. In an effort to isolate as many candidates as possible, we are cloning genes from this region. We report here the mapping for a new sequence from 11q13.5–11q14. This sequence, designated D11S833E, putatively encodes a new gene, provisionally named GARP. We cloned its homologous sequence in the mouse and located it on Chromosome (Chr) 7, region F. The human and mouse genes belong to a conserved group of synteny. This, together with the similar conservation of the FGF and TYR genes, indicates that the human 11q13–q14 and mouse 7E-7F regions share homology.  相似文献   

9.

Background  

The Tnfrh1 gene (gene symbol Tnfrsf23) is located near one end of a megabase-scale imprinted region on mouse distal chromosome 7, about 350 kb distant from the nearest known imprinting control element. Within 20 kb of Tnfrh1 is a related gene called Tnfrh2 (Tnfrsf22) These duplicated genes encode putative decoy receptors in the tumor necrosis factor (TNF) receptor family. Although other genes in this chromosomal region show conserved synteny with genes on human Chr11p15.5, there are no obvious human orthologues of Tnfrh1 or Tnfrh2.  相似文献   

10.
By means of somatic cell hybrids segregating rat chromosomes, we determined the chromosome localization of three rat genes of the Jun family: Jumb (Chr 19), Jun (=c-Jun) (Chr 5) and Jund (Chr 16). The Jun gene was also localized to the 5q31–33 region by fluorescence in situ hybridization. These rat gene assignments reveal two new homologies with mouse and human chromosomes, and provide a new example of synteny conserved in the human and a rodent species (the mouse), but split between the two rodent species.  相似文献   

11.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

12.
A population of 131 recombinant inbred lines from a wide cross between chickpea ( Cicer arietinum L., resistant parent) and Cicer reticulatum (susceptible parent) segregating for the closely linked resistances against Fusarium oxysporum f.sp. ciceri races 4 and 5 was used to develop DNA amplification fingerprinting markers linked to both resistance loci. Bulked segregant analysis revealed 19 new markers on linkage group 2 of the genetic map on which the resistance genes are located. Closest linkage (2.0 cM) was observed between marker R-2609-1 and the race 4 resistance locus. Seven other markers flanked this locus in a range from 4.1 to 9.0 cM. These are the most closely linked markers available for this locus up to date. The sequences of the linked markers were highly similar to genes encoding proteins involved in plant pathogen response, such as a PR-5 thaumatin-like protein and an important regulator of the phytoalexin pathway, anthranilate N-hydroxycinnamoyl-benzoyltransferase. Others showed significant alignments to genes encoding housekeeping enzymes such as the MutS2 DNA-mismatch repair protein. In the Arabidopsis genome, similar genes are located on short segments of chromosome 1 and 5, respectively, suggesting synteny between the fusarium resistance gene cluster of chickpea and the corresponding regions in the Arabidopsis genome. Three marker sequences were similar to retrotransposon-derived and/or satellite DNA sequences. The markers developed here provide a starting point for physical mapping and map-based cloning of the fusarium resistance genes and exploration of synteny in this highly interesting region of the chickpea genome.  相似文献   

13.
The rat beige (bg) autosomal recessive gene, causing Chediak-Higashi Syndrome (CHS) in rat, was mapped on Chr 17 by using synteny of rat to mouse and humans. The linkage between the beige gene and PCR-amplified microsatellite markers in (DA-bg x BN)F1 x DA-bg backcross progeny was analysed. The recombination frequency was 9.5% between Prl and Acrm and 19.1% between Acrm and bg. The proposed order of three genes is Prl-Acrm-bg. This rat bg gene was confirmed to be homologus to the beige (bg) gene of mouse located on Chr 13 and the CHS (Lyst) gene of man located on Chr 1 (1q43).  相似文献   

14.
Fatty acid synthase and Acetyl-CoA carboxylase are both key enzymes of lipogenesis and may play a crucial role in the weight variability of abdominal adipose tissue in the growing chicken. They are encoded by the FASN and ACACA genes, located on human Chromosome (Chr) 17q25 and on Chr 17q12 or 17q21 respectively, a large region of conserved synteny among mammals. We have localized the homologous chicken genes FASN and ACACA coding for these enzymes, by single-strand conformation polymorphism analysis on different linkage groups of the Compton and East Lansing consensus genetic maps and by FISH on two different chicken microchromosomes. Although synteny is not conserved between these two genes, our results revealed linkage in chicken between FASN and NDPK (nucleoside diphosphate kinase), a homolog to the human NME1 and NME2 genes (non-metastatic cell proteins 1 and 2), both located on human Chr 17q21.3, and also between FASN and H3F3B (H3 histone family 3B), located on human Chr 17q25. The analysis of mapping data from the literature for other chicken and mammalian genes indicates rearrangements have occurred in this region in the mammalian lineage since the mammalian and avian radiation. Received: 8 August 1997 / Accepted: 24 November 1997  相似文献   

15.
One hundred and forty two cotton germplasm lines were screened for cotton leaf curl virus symptoms in field evaluations during 2003, 2004, and 2005. Fifty cross combinations involving 30 of these lines classified resistant or susceptible were used for inheritance study of the disease. All the F(1) plants of crosses involving resistant x resistant, resistant x susceptible, and susceptible x resistant parents were resistant, indicating dominant expression of the disease resistance and there were no maternal or cytoplasmic effects detected from reciprocal hybridization. In 22 crosses, 4 types of segregation patterns were obtained in the F(2) generations. A good fit for 15 (resistant):1 (susceptible), 13 (resistant):3 (susceptible), 9 (resistant):7 (susceptible) ratios indicated digenic control of the trait with duplicate dominant, dominant inhibitory, and duplicate recessive epistasis, respectively. Three-gene control with triplicate dominant epistasis was obtained in one of the crosses. This segregation pattern, however, needs further confirmation due to smaller population size. The absence of complementary gene action was obtained in 1 susceptible x susceptible and 27 resistant x resistant crosses as their F(1)s were susceptible and resistant, respectively, and F(2) generation lacked segregation.  相似文献   

16.
K(+)-Cl(-) cotransporters (KCCs) constitute a branch of the cation-chloride cotransporter (CCC) family. To date, four KCC isoforms (KCC1-KCC4) have been identified and they all mediate obligatorily coupled, electroneutral transmembrane movement of K(+) and Cl(-) ions. KCC2 (gene symbol SLC12A5) is expressed exclusively in neurons within the central nervous system and abnormalities in its expression have been proposed to play a role in pathological conditions such as epilepsy and neuronal trauma. Here we have determined chromosome location of both the human and the mouse genes encoding KCC2, which may assist in future efforts to determine the contribution of KCC2 to inherited human disorders. We assigned human SLC12A5 to 20q12-->q13.1 and its murine homolog, Slc12a5, to 5G2-G3 by fluorescence in situ hybridization (FISH). These mapping data are contradictory to the previously reported human-mouse conserved synteny relationships disrupting an exceptionally well-conserved homology segment between human Chr 20 and mouse Chr 2. We hence suggest the first region of conserved homology between human Chr 20 and mouse Chr 5.  相似文献   

17.
Marker-assisted selection (MAS) to enhance genetic resistance to Marek's disease (MD), a herpesvirus-induced T cell cancer in chicken, is an attractive alternative to augment control with vaccines. Our earlier studies indicate that there are many quantitative trait loci (QTL) containing one or more genes that confer genetic resistance to MD. Unfortunately, it is difficult to sufficiently resolve these QTL to identify the causative gene and generate tightly linked markers. One possible solution is to identify positional candidate genes by virtue of gene expression differences between MD resistant and susceptible chicken using deoxyribonucleic acid (DNA) microarrays followed by genetic mapping of the differentially-expressed genes. In this preliminary study, we show that DNA microarrays containing approximately 1200 genes or expressed sequence tags (ESTs) are able to reproducibly detect differences in gene expression between the inbred ADOL lines 63 (MD resistant) and 72 (MD susceptible) of uninfected and Marek's disease virus (MDV)-infected peripheral blood lymphocytes. Microarray data were validated by quantitative polymerase chain reaction (PCR) and found to be consistent with previous literature on gene induction or immune response. Integration of the microarrays with genetic mapping data was achieved with a sample of 15 genes. Twelve of these genes had mapped human orthologues. Seven genes were located on the chicken linkage map as predicted by the human-chicken comparative map, while two other genes defined a new conserved syntenic group. More importantly, one of the genes with differential expression is known to confer genetic resistance to MD while another gene is a prime positional candidate for a QTL.  相似文献   

18.
The strain distribution pattern of susceptibility to thymocyte apoptosis induced by ionizing radiation in 20 CcS/Dem recombinant congenic (RC) strains derived from the strains BALB/cHeA (susceptible) and STS/A (resistant) indicates that this trait is controlled by several genes. Recently, we mapped a novel apoptosis susceptibility gene Rapop1 (radiation-induced apoptosis 1) to chromosome 16 (N. Mori et al., 1995, Genomics 25: 604-614). In the present study, the analysis of F2 crosses between the resistant RC strain CcS-8 and the susceptible strain BALB/cHeA or the highly susceptible RC strain CcS-10 demonstrated two additional apoptosis susceptibility genes, Rapop2 and Rapop3, located in the proximal region of chromosome 9 and the telomeric region of chromosome 3, respectively. The possible candidate genes for these loci are discussed.  相似文献   

19.
The mouse genes for the lysosomal cysteine proteinases cathepsin B, H, L, and S were mapped to Chromosomes (Chrs) 14, 9, 13, and 3, respectively. Two of the DNA probes used in this study detected an additional, independently segregating locus. The cathepsin B-specific probe hybridized to a locus on Chr 2, and the cathepsin H probe to a locus on the X Chr. These loci either correspond to pseudogenes or to cathepsin B- and cathepsin H-related genes. The four cysteine proteinases mapped in this study lie within known regions of conserved synteny between mouse and human chromosomes, when compared with the corresponding positions of their human homologs. Assuming that the genes of the cysteine proteinase gene family arose from a common ancestral gene, our results suggest that these four cysteine proteinases had been dispersed over different chromosomes before separation of mouse and human in evolution. Received: 22 August 1996 / Accepted: 20 November 1996  相似文献   

20.
Radiation hybrid (RH) mapping has been used to produce genome maps in the human and mouse, but as yet the technique has been applied little to other species. We describe the use of RH mapping in the rat, using a newly available rat/hamster RH panel, to construct an RH map of the proximal part of rat Chromosome (Chr) 4. This region is of interest because quantitative trait loci (QTLs) for defective insulin and catecholamine action, hypertension, and dyslipidemia map to this region. The RH map includes 23 rat genes or microsatellites previously mapped to this part of Chr 4, one rat gene not previously mapped in the rat, and markers for four new genes, homologs of which map to the syntenic region of the mouse genome. The RH map integrates genetic markers previously mapped on several rat crosses, increases the resolution of existing maps, and may provide a suitable basis for physical map construction and gene identification in this chromosomal region. Our results demonstrate the utility of RH mapping in the rat genome and show that RH mapping can be used to localize, in the rat genome, the homologs of genes from other species such as the mouse. This will facilitate identification of candidate genes underlying QTLs on this chromosomal segment. Received: 4 December 1998 / Accepted: 19 January 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号