首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
Progesterone as a regulator of granulosa cell viability   总被引:2,自引:0,他引:2  
Progesterone (P4) prevents numerous cells, including uterine, mammary and ovarian cells, from undergoing apoptosis. Interestingly, P4 prevents apoptosis of ovarian granulosa cells (GCs), which do not express the classic nuclear P4 receptor. This review presents data that support a non-genomic action of P4 in granulosa cells. These studies were conducted using both primary rat granulosa cells and rat spontaneously immortalized granulosa cells (SIGCs). Specifically, these studies reveal that (1) 3H-P4 specifically binds to SIGCs; (2) an antibody directed against the ligand binding domain of the nuclear P4 receptor (C-262) detects a 60 kDa protein, which localizes to the plasma membrane and binds P4; and (3) treatment with C-262 blocks P4’s ability to maintain granulosa cell viability. Additional studies demonstrate that a protein kinase G (PKG) activator, 8-br-cGMP, mimics and PKG antagonists, Rp-8-pcCPT-GMP and KT5823, attenuate P4’s action. These studies support the concept that the 60 kDa P4 binding protein functions as membrane receptor for P4 which activates a PKG-dependent mechanism to regulate granulosa cell survival.  相似文献   

2.
Progesterone (P4) inhibits both granulosa cells and spontaneously immortalized granulosa cells (SIGCs) from undergoing apoptosis. P4 does so through a plasma membrane-initiated event. It appears that P4's membrane-initiated actions are mediated by a 60-kDa P4 binding protein (P4BP), which is detected by an antibody directed against the ligand binding domain of the nuclear P4 receptor (i.e., C-262). Immunohistochemical analysis revealed that a C-262-detectable protein was first observed in the periphery of a few granulosa cells within early antral-stage follicles. In nonatretic antral follicles, this protein was detected at the periphery of virtually all granulosa cells. In contrast, granulosa cells of atretic follicles lost the distinct peripheral localization of this C-262-detectable protein. This reduction in the membrane localization was also observed by Western blot analysis. To assess the temporal changes in this 60-kDa P4BP during apoptosis, studies were conducted using SIGCs. That this 60-kDa protein is important in mediating P4's action was confirmed by the observation that C-262 but not IgG attenuated P4's antiapoptotic action. Interestingly, the membrane localization of this 60-kDa P4BP was maintained but the ability of P4 to prevent apoptosis was lost within 20 min of initiating the apoptotic cascade. In addition, Erk-1 and -2 phosphorylation (i.e., activity) increased within 20 min of P4 withdrawal. Further, P4 suppressed the increase in the Erk-1 phosphorylation if administered within 5 but not 20 min of initiating the apoptotic cascade. Moreover, the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, reduced the percentage of SIGCs undergoing apoptosis in the absence of P4. Because MEK phosphorylates Erk, these observations suggests that 1) the increase in Erk-1 activity is an important part of the apoptotic cascade, 2) P4 promotes granulosa cell viability by modulating the activity of Erk-1, and 3) P4 becomes "uncoupled" from its antiapoptotic signal transduction mechanism within 20 min of initiating apoptosis, even though the membrane localization of the 60-kDa P4BP is maintained.  相似文献   

3.
Rapid actions of progesterone on granulosa cells   总被引:6,自引:0,他引:6  
Peluso JJ 《Steroids》2004,69(8-9):579-583
Ovarian granulosa cells are responsive to progesterone but do not express the nuclear progesterone receptor. In an attempt to identify a receptor for progesterone (P4) in granulosa cells (GCs), an antibody built against the ligand binding site of the P4 receptor (i.e. C-262) was used. This antibody detected a 60 kDa protein in GCs as well as spontaneously immortalized granulosa cells (SIGCs). This C-262 detectable protein localizes to the plasma membrane and binds P4. Importantly, this C-262 detectable protein appears to be involved in mediating P4's biological actions. This is based on the findings that C-262 1) blocks P4's ability to inhibit mitogen-induced mitosis and apoptosis and 2) FITC-BSA-conjugated P4 binding to granulosa cells. A C-262 detectable protein was isolated using a C-262 affinity column and sequenced. This analysis identified an unnamed protein referred to as RDA288 that was found in the rat genome (Accession number: XM216160). A nearly identical unnamed protein was found in a cDNA library of mouse lung (Accession number: AK004678). Whether RDA288 functions as a membrane receptor for P4 remains to be determined.  相似文献   

4.
5.
The protein PAIRBP1, which was initially referred to as RDA288, is involved in mediating the antiapoptotic action of progesterone (P4) in spontaneously immortalized granulosa cells (SIGCs). The present studies were designed to assess the expression and function of PAIRBP1 in the different cell types within the immature rat ovary. Western blot analysis detected PAIRBP1 within whole-cell lysates of immature rat ovaries. Equine gonadotropin (eCG) induced a 3-fold increase in ovarian levels of PAIRBP1. Moreover, human chorionic gonadotropin (hCG), given 48 h after eCG, maintained these elevated levels for up to 4 days. Immunohistochemical analysis confirmed this and further demonstrated that interstitial, thecal, and surface epithelial cells also expressed PAIRBP1. The level of PAIRBP1 in these cells was not influenced by gonadotropin treatment. In contrast, eCG stimulated an increase in PAIRBP1 within the granulosa cells of the developing follicles. Treatment with hCG induced ovulation and ultimately the formation of corpora lutea (CL). High levels of PAIRBP1 expression were also observed within the luteal cells. Immunocytochemical studies on living, nonpermeabilized granulosa and luteal cells revealed that some PAIRBP1 localized to the extracellular surface of these cells. The presence of PAIRBP1 on the extracellular surface was consistent with the observation that an antibody to PAIRBP1 attenuated P4's antiapoptotic action in both granulosa and luteal cells. Although the PAIRBP1 antibody attenuated P4's action, it did not reduce the capacity of cells to specifically bind (3)H-P4. Immunoprecipitation with the PAIRBP1 antibody pulled down the membrane P4 binding protein known as progesterone receptor membrane complex-1 (PGRMC1; rat homolog accession number AJ005837). Taken together, these findings suggest that gonadotropins regulate the expression of PAIRBP1 in granulosa and luteal cells and that PAIRBP1 plays an important role in mediating P4's antiapoptotic action in these ovarian cell types. The exact mechanism of PAIRBP1's action remains to be elucidated, but it may involve an interaction with PGRMC1.  相似文献   

6.
The present studies were designed to determine the role that homophilic E-cadherin binding plays in preventing apoptosis of spontaneously immortalized granulosa cells (SIGCs). Although the levels of E-cadherin were similar to serum control levels, the amount of E-cadherin at the plasma membrane was dramatically reduced by 5 h after serum withdrawal. To determine whether disrupting homophilic E-cadherin binding leads to apoptosis, SIGCs were cultured in serum in the presence of either EGTA or an E-cadherin antibody. Treatment with either EGTA, which disrupts all calcium-dependent contacts, or E-cadherin antibody, induced apoptosis. Exposure to EGTA reduced MEK and Akt kinase activity, whereas E-cadherin antibody only attenuated Akt kinase activity. Because Akt kinase controls caspase-3 activity, an important activator of apoptosis, caspase-3 activity was monitored. Caspase-3 activity increased after serum depletion, or EGTA or E-cadherin antibody treatment. Time-series analysis of caspase-3 activity within single cells revealed that during apoptosis cell contact was disrupted then caspase-3 activity was detected. Finally, the caspase inhibitor, Z-VAD-FMK, blocked apoptosis. These data taken together are consistent with the concept that E-cadherin-mediated cell contact, either directly or indirectly, promotes Akt kinase activity, which in turn, inhibits caspase-3 activation and thereby maintains SIGC viability.  相似文献   

7.
Progesterone (P4) inhibits granulosa cell and spontaneously immortalized granulosa cell (SIGC) apoptosis by regulating membrane-initiated events. However, the nature of the signal transduction pathway that is induced by these membrane-initiated events has not been defined. To gain insights into the P4-regulated signal transduction pathway, mouse granulosa cells and SIGCs were cultured with 8-br-cGMP and P4. In culture, 8-br-cGMP mimicked P4's antiapoptotic actions. Because cGMP activates protein kinase G (PKG), the effect of PKG antagonists on P4-regulated SIGC viability was assessed. P4's antiapoptotic action was attenuated by the PKG inhibitors, Rp-8-pCPT-cGMP, KT5823, the PKG-1alpha-specific inhibitor, DT-3, and a dominant negative PKG-1alpha. Further, the type I isoform of PKG was shown to be expressed by SIGCs and activated by P4. P4's antiapoptotic action was not affected by the PKA inhibitor, KT5720. Collectively, these findings indicate that P4 maintains SIGC viability by activating PKG-1alpha. PKG-1alpha-GFP was shown to localize predominantly to the cytoplasm of SIGCs. To identify potential cytoplasmic targets of PKG-1alpha, SIGCs were cultured for 5 h with P4 in the presence or absence of DT-3. Cell lysates were prepared and subjected to two-dimensional electrophoresis. The resulting gels were sequentially stained with ProQ-Diamond Gel Stain and Coomassie Blue to reveal phosphorylated proteins. The two-dimensional gels revealed one major protein, the phosphorylation status of which was abrogated by DT-3. Mass spectrometric analysis identified this protein as 14-3-3sigma, with 14-3-3sigma being phosphorylated on tyrosine 19, serine 28, serine 69, serine 74, threonine 90, threonine 98, and serine 116. Finally, difopein, a specific 14-3-3 inhibitor, was shown to induce apoptosis even in the presence of serum. These data suggest that 1) P4 regulates the phosphorylation status of 14-3-3sigma through a PKG-dependent pathway and 2) 14-3-3sigma plays a central and essential role in maintaining the viability of SIGCs.  相似文献   

8.
9.
In ovarian granulosa cells, follicle-stimulating hormone (FSH) regulates the proliferation and differentiation events required for follicular growth and oocyte maturation. FSH actions are mediated exclusively through the FSH receptor (FSHR). In cattle, the FSHR gene expression pattern during folliculogenesis and the implications of this receptor in reproductive disorders have been extensively studied. However, the limited availability of specific antibodies against bovine FSHR has restricted FSHR protein analysis. In the present study, we developed an anti-FSHR polyclonal serum by using a 14-kDa peptide conjugated to maltose binding protein. The antiserum obtained was characterized by western blot of protein extracts from bovine follicles, BGC-1 cells and primary cultures of granulosa cells stimulated with testosterone. Also, the blocking effect of serum on estradiol secretion and cell viability after gonadotropin stimulus was characterized in a functional in vitro assay. A 76-kDa protein, consistent with the predicted molecular size of full-length FSHR, was detected in ovarian tissue. Besides, two immunoreactive bands of 60-kDa and 30-kDa (only in cultured cells) were detected. These bands would be related to some of the isoforms of the receptor. Therefore, immunohistochemical assays allowed detecting FSHR in the cytoplasm of granulosa cells and an increase in its expression as follicles progressed from primordial to large preantral follicles. These results suggest that the anti-FSHR serum here developed has good reactivity and specificity against the native FSHR. Therefore, this antiserum may serve as a valuable tool for future studies of the biological function of FSHR in physiological conditions as well as of the molecular mechanism and functional involvement of FSHR in reproductive disorders.  相似文献   

10.
A radiolabeled N-(3-aminopropyl)-leukotriene B4 amide ([3H]LTB4-APA) analog of the potent leukocyte chemotactic factor leukotriene B4 (LTB4) binds to receptors for LTB4 in plasma membrane-enriched preparations from human blood polymorphonuclear leukocytes (PMNL) and intact PMNL with respective mean dissociation constants of 2.3 nM and 69 nM at 4 degrees C. The [3H]LTB4-APA bound to plasma membrane-enriched preparations from PMNL was covalently cross-linked to membrane proteins with disuccinimidyl suberate. Solubilization and resolution by SDS-PAGE of proteins from [3H]LTB4-APA-labeled PMNL membranes revealed predominant labeling of a 60-kDa protein. Labeling of the PMNL membrane protein was inhibited by LTB4 and its analogs at concentrations similar to those inhibiting the binding of [3H]LTB4 to its receptor, with an identical rank order of potency of LTB4 greater than 20-hydroxy-LTB4 greater than LTB4-APA = 5(S),12(R)-dihydroxy-eicosa-14-cis-6,8,10-trans-tetraenoic acid much greater than LTD4 = LTC4. GTP suppressed the labeling of the 60-kDa PMNL membrane protein to an extent consistent with the decrease in receptor affinity for LTB4 induced by GTP. The stereospecificity of the affinity cross-linking reaction and the regulation by GTP support the identification of an approximately 60-kDa protein as the binding component of the PMNL receptor for LTB4.  相似文献   

11.
Platelet-derived growth factor (PDGF) stimulates autophosphorylation of the PDGF receptor and association of the receptor with several cytoplasmic molecules, including phosphatidylinositol-3 kinase (PI3 kinase). In this study we examined the association of PI3 kinase with immunoprecipitated autophosphorylated PDGF receptor in vitro. The PI3 kinase from cell lysates bound to the wild-type receptor but not to a mutant receptor that had a deletion of the kinase insert region. A protein of an apparent size of 85 kDa bound to the receptor, consistent with previous observations that a protein of this size is associated with PI3 kinase activity. In addition, 110- and 74-kDa proteins bound to the phosphorylated receptor. Dephosphorylated receptors lost the ability to bind PI3 kinase activity as well as the 85-kDa protein. A 20-amino-acid peptide composed of a sequence in the kinase insert region that included one of the autophosphorylation sites of the receptor (tyrosine 719) as well as a nearby tyrosine (Y708) blocked the binding of PI3 kinase to the receptor, but only when the peptide was phosphorylated on tyrosine residues. A scrambled version of the peptide did not block PI3 kinase binding to the receptor even when it was phosphorylated on tyrosine. These tyrosine-phosphorylated peptides did not block binding of phospholipase C-gamma or GTPase-activating protein to the receptor. In separate experiments (receptor blots), soluble radiolabeled receptor bound specifically to an 85-kDa protein present in sodium dodecyl sulfate-polyacrylamide gel electrophoresis-fractionated 3T3 cell lysates that were transferred to nitrocellulose paper. The binding was blocked by the same tyrosine-phosphorylated peptides that prevented binding of PI3 kinase activity to immobilized receptors. These findings show that the PDGF receptor binds directly to an 85-kDa protein and to a PI3 kinase activity through specific sequences in the kinase insert region. The association of a 110-kDa protein with the receptor also involve these sequences, suggesting that this protein may be a subunit of the PI3 kinase. Phosphotyrosine is an essential structure required for the interactions of these proteins with the PDGF receptor.  相似文献   

12.
Previous studies have shown that the avian progesterone receptor, when in the nontransformed 8 S state, is complexed to another cellular protein having a molecular weight of 90,000. In this report, we show that this receptor-binding protein is indistinguishable from the 90,000-dalton protein which associates in a complex with the Rous sarcoma virus transforming protein, pp60v-src. This identity was established by the following criteria. 1) Monoclonal antibodies directed against the pp60v-src-associated 90-kDa protein recognized the 90-kDa progesterone receptor binding protein in an immunoblot assay. Conversely, monoclonal antibodies that recognize the progesterone receptor binding protein bind to the 90-kDa protein which complexes with pp60v-src. 2) Peptide maps prepared from the 90-kDa proteins immunoprecipitated from chicken cells with monoclonal antibodies directed against either the 90-kDa receptor binding protein or the 90-kDa pp60v-src-associated protein were indistinguishable. 3) Preincubation of the progesterone receptor complex with monoclonal antibodies prepared against the pp60v-src-associated protein caused a shift in the sedimentation of the progesterone receptor. Previous studies have established that the pp60v-src-associated protein is indistinguishable from one of the major heat shock proteins which are induced under a variety of stress conditions in eukaryotic cells. These present studies implicate a new role for this 90-kDa protein in the action of steroid hormones.  相似文献   

13.
14.
Hens of the "Restricted Ovulator" (R/O) chicken strain are characterized by the absence of egg-laying and concomitant severe hyperlipidemia due to a single gene defect (Ho, K. J., Lawrence, W. D., Lewis, L. A., Liu, L. B., and Taylor, C. B. (1974) Arch. Pathol. 98, 161-172). However, the underlying biochemical defect has not been identified. Previous studies on receptor-mediated growth of chicken oocytes have led to the characterization of a 95-kDa oocyte plasma membrane receptor that binds very low density lipoproteins (VLDL) (George, R., Barber, D. L., and Schneider, W. J. (1987) J. Biol. Chem. 262, 16838-16847). The current experiments demonstrate the absence of this receptor from R/O oocytes. Ligand binding experiments showed that ovarian membranes from mutant hens failed to display high affinity, saturable, and specific binding of 125I-VLDL. Ligand blotting with 125I-VLDL and Western blotting with polyclonal anti-receptor antibodies visualized the 95-kDa receptor in normal oocytes, but R/O ovarian membranes were devoid of any cross-reactive protein. Finally, plasma clearance of intravenously injected 125I-VLDL was dramatically impaired in R/O in comparison to normal hens, with a concomitant decrease in the radioactivity accumulating in R/O oocytes. These data strongly suggest that the absence of the 95-kDa receptor for VLDL from oocytes is responsible for the R/O phenotype, and that the receptor not only binds VLDL, but also mediates its uptake. This animal model provides a powerful tool for investigations of receptor-mediated growth of chicken oocytes and for the elucidation of regulatory mechanisms in lipid and lipoprotein metabolism of laying hens.  相似文献   

15.
促红细胞生成素产生肝细胞受体(Eph receptor) 是受体酪氨酸激酶(RTK)家族中最大的亚家族,其介导的双向信号传导对细胞的形态、黏附、运动、增殖、生存及分化都有重要的调控作用。EphA2是Eph受体家族中一个被广泛研究的重要亚型,在白内障和乳腺癌等病理发生过程中发挥了重要作用。既往研究发现:EphA2受体的激酶结构域可结合细胞膜,其激酶活性受磷脂膜的调控,但是相邻的SAM结构域对激酶结构域与脂膜的相互作用以及激酶活性的影响尚不清楚。在此项研究中,通过与磷酸酶PTP1B1-301活性片段共表达的方式,表达、纯化了EphA2受体的胞内段激酶-SAM串联结构域,通过比较胞内段激酶-SAM串联结构域与单独激酶结构域的脂质体结合能力,以及测定对应的激酶活性,发现:EphA2受体胞内段的SAM结构域使其激酶结构域与脂质体(4 mg/mL)的结合能力增强约6倍(P<0.001);磷酸化后的EphA2胞内段激酶-SAM串联结构域结合脂质体(4 mg/mL)的能力比非磷酸化的胞内段激酶-SAM串联结构域提高2.5倍(P<0.05);而结合脂质体后,激酶结构域的激酶活性也被进一步提高,从而形成正反馈。综上所述,本研究的发现提示:EphA2胞内段的酪氨酸激酶结构域与相邻的SAM结构域可形成一个完整的结构功能单位,其激酶活性和脂质体结合能力与单独的激酶结构域相比都形成了明显的差异,我们的这一发现对进一步理解Eph受体家族其他亚型的激酶结构域的活性调控提供了参考与思路。  相似文献   

16.
Hanada K  Hirano H 《Biochemistry》2004,43(38):12105-12112
A 43-kDa soybean protein is a receptor-like protein kinase that is capable of interaction with a 4-kDa hormone-like peptide (leginsulin). The 43-kDa protein consists of alpha and beta subunits; the beta subunit has protein kinase activity that is stimulated by the binding of the 4-kDa peptide. The protein kinase activity is believed to be an early step in a signal transduction cascade, triggered by the peptide. Animal insulin also interacts with the 43-kDa protein and stimulates the protein kinase activity, suggesting that the 4-kDa peptide and insulin bind to the 43-kDa protein with similar mechanisms. To determine the mechanism of interaction between the 4-kDa peptide and 43-kDa protein, we investigated the binding region of the 4-kDa peptide on the 43-kDa protein using surface plasmon resonance (SPR) spectroscopy. We found that the N- (amino acids 1-43) and C-terminal (amino acids 228-251) regions of the alpha subunit of the 43-kDa protein are involved in the binding. The interactions of both insulin and the 4-kDa peptide with the 43-kDa protein were compared using SPR spectroscopy, revealing that insulin binds to the C-terminal regions of the alpha subunit of the 43-kDa protein. These results suggest that the C-terminal region is especially important for the biological function. The N-terminal region is thought to play an important role in stabilizing the complex of the 43-kDa protein and the 4-kDa peptide.  相似文献   

17.
Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) are structurally related growth factors that exert their biological actions by binding to the same cell-surface receptor, EGF receptor. However, in chicken cells, human EGF binds with approximately 100-fold lower affinity than human TGF-. In a previous study, we localized EGF/TGF- receptor immunohistochemically in the granulosa and theca of the developing follicles of laying hens. We have also shown that TGF- binds to cell-surface receptors of the granulosa cells. The present study characterizes the nature of the EGF/TGF- receptor. Immunoprecipitation of receptor proteins from cultured granulosa cells with an anti-EGF receptor antibody (12E) shows the expression of a 170-kDa receptor protein. The expression of the receptor protein decreases with follicular enlargement between the F3 and F1. Incubation of the cells with [125I]TGF- followed by crosslinking with bis(sulphosuccinimidyl)suberate showed that TGF- binds a similar (170 kDa) receptor protein immunoprecipitated with the 12E anti-EGF receptor antibody. The binding of TGF- to granulosa cells caused receptor protein oligomerization, yielding the monomeric (170 kDa) and dimeric (340 kDa) protein forms. Oligomerization seemed to favour the formation of the dimeric rather than the monomeric form. Culturing granulosa cells with luteinizing hormone or follicle-stimulating hormone increased the expression of both monomer and dimer forms of the receptor proteins compared with the control. Western blotting analysis with anti-phosphotyrosine antibody revealed that the lysates of TGF--stimulated cells express phosphotyrosine-containing receptor proteins of 170 kDa and 340 kDa. The results show that chicken granulosa cells express the 170-kDa EGF=TGF- receptor protein, which dimerizes on binding to TGF-, suggesting that the receptor protein may be involved in the signal transduction of TGF- actions in the chicken granulosa cells.  相似文献   

18.
The intercellular tight junctions (TJs) of endothelial cells represent the limiting structure for the permeability of the blood-brain barrier (BBB). Although the BBB has been recognized as being the interface between the bloodstream and the brain, little is known about its regulation. Zonulin and its prokaryotic analogue, zonula occludens toxin (Zot) elaborated by Vibrio cholerae, both modulate intercellular TJs by binding to a specific surface receptor with subsequent activation of an intracellular signaling pathway involving phospholipase C and protein kinase C activation and actin polymerization. Affinity column purification revealed that human brain plasma membrane preparations contain two Zot binding proteins of approximately 55 and approximately 45 kDa. Structural and kinetic studies, including saturation and competitive assays, identified the 55-kDa protein as tubulin, whereas the 45-kDa protein represents the zonulin/Zot receptor. Biochemical characterization provided evidence that this receptor is a glycoprotein containing multiple sialic acid residues. Comparison of the N-terminal sequence of the zonulin/Zot receptor with other protein sequences by BLAST analysis revealed a striking similarity with MRP-8, a 14-kDa member of the S-100 family of calcium binding proteins. The discovery and characterization of this receptor from human brain may significantly contribute to our knowledge on the pathophysiological regulation of the BBB.  相似文献   

19.
Protein kinase C (Ca2+/phospholipid-dependent enzyme) is known to phosphorylate the epidermal growth factor receptor and reduce its affinity for epidermal growth factor. Transformation of 3T3 fibroblasts by the oncogenic tyrosine kinase pp60v-src is accompanied by an elevation of cellular diacylglycerol and partial activation of protein kinase C (Wolfman, A., Wingrove, T. G., Blackshear, P. J., and Macara, I. G. (1987) J. Biol. Chem. 262, 16546-16552). We therefore asked whether pp60v-src can down-modulate the epidermal growth factor receptor. We report that within 15 min of activating temperature-sensitive pp60v-src, binding of 125I-labeled epidermal growth factor to 3T3 cells falls at least 50%. Two distinct processes control the down-modulation by pp60v-src. The first is rapid and transient, while the second requires protein synthesis and persists long after inactivation of pp60v-src. Surprisingly, both mechanisms seem to be protein kinase C-independent. Both operate by decreasing the affinity of the epidermal growth factor receptor for its ligand.  相似文献   

20.
A peripheral membrane protein with a relative molecular mass of 93,000 Da is associated with cytoplasmic domains of the inhibitory glycine receptor of mammalian spinal cord. Here, evidence is given that this 93-kDa protein binds to polymerized tubulin. First, tubulin cofractionated with the 93-kDa protein upon affinity purification of the glycine receptor. Second, tubulin bound to the isolated 93-kDa protein in an overlay procedure. Third, in assays containing the purified glycine receptor, the 93-kDa protein as well as the glycine receptor alpha and beta subunits coassembled with tubulin and microtubules. The interaction of the 93-kDa protein with tubulin displayed high affinity (KD approximately 2.5 nM) and significant cooperativity (Hill coefficient approximately 2.1) and approached a stoichiometry of approximately 1:4 under saturating conditions. These data suggest that the 93-kDa protein anchors the glycine receptor at postsynaptic sites via binding to subsynaptic tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号