首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pro-apoptotic "BH3 domain-only" proteins of the Bcl-2 family (e.g. Bid and Bad) transduce multiple death signals to the mitochondrion. They interact with the anti-apoptotic Bcl-2 family members and induce apoptosis by a mechanism that requires the presence of at least one of the multidomain pro-apoptotic proteins Bax or Bak. Although the BH3 domain of Bid can promote the pro-apoptotic assembly and function of Bax/Bak by itself, other BH3 domains do not function as such. The latter point raises the question of whether, and how, these BH3 domains induce apoptosis. We show here that a peptide comprising the minimal BH3 domain from Bax induces apoptosis but is unable to stimulate the apoptotic activity of microinjected recombinant Bax. This relies on the inability of the peptide to directly induce Bax translocation to mitochondria or a change in its conformation. This peptide nevertheless interferes with Bax/Bcl-xL interactions in vitro and stimulates the apoptotic activity of Bax when combined with Bcl-xL. Similarly, a peptide derived from the BH3 domain of Bad stimulates Bax activity only in the presence of Bcl-xL. Thus, BH3 domains do not necessarily activate multidomain pro-apoptotic proteins directly but promote apoptosis by releasing active multidomain pro-apoptotic proteins from their anti-apoptotic counterparts.  相似文献   

2.
It has previously been shown that an amphipathic de novo designed peptide made of 10 leucines and four phenylalanines substituted with crown ethers induces vesicle leakage without selectivity. To gain selectivity against negatively charged dimyristoylphosphatidylglycerol (DMPG) bilayers, one or two leucines of the peptide were substituted with positively charged residues at each position. All peptides induce significant calcein leakage of DMPG vesicles. However, some peptides do not induce significant leakage of zwitterionic dimyristoylphosphatidylcholine vesicles and are thus active against only bacterial model membranes. The intravesicular leakage is induced by pore formation instead of membrane micellization. Nonselective peptides are mostly helical, while selective peptides mainly adopt an intermolecular β-sheet structure. This study therefore demonstrates that the position of the lysine residues significantly influences the secondary structure and bilayer selectivity of an amphipathic 14-mer peptide, with β-sheet peptides being more selective than helical peptides.  相似文献   

3.
M Rafalski  J D Lear  W F DeGrado 《Biochemistry》1990,29(34):7917-7922
Peptides representing the N-terminal 23 residues of the surface protein gp41 of LAV1a and LAVmal strains of the human immunodeficiency virus were synthesized and their interactions with phospholipid vesicles studied. The peptides are surface-active and penetrate lipid monolayers composed of negatively charged but not neutral lipids. Similarly, the peptides induce lipid mixing and solute (6-carboxyfluorescein) leakage of negatively charged, but not neutral, vesicles. Circular dichroism and infrared spectroscopy show that at low peptide:lipid ratios (approximately 1:200), the peptides bind to negatively charged vesicles as alpha-helices. At higher peptide:lipid ratios (1:30), a beta conformation is observed for the LAV1a peptide, accompanied by a large increase in light scattering. The LAVmal peptide showed less beta-structure and induced less light scattering. With neutral vesicles, only the beta conformation and a peptide:lipid ratio-dependent increase in vesicle suspension light scattering were observed for both peptides. We hypothesize that the inserted alpha-helical form causes vesicle membrane disruption whereas the surface-bound beta form induces aggregation.  相似文献   

4.
Hunter-killer peptides are chimeric synthetic peptides that selectively target specific cell types for an apoptotic death. These peptides, which are models for potential therapeutics, contain a homing sequence for receptor-mediated interactions and a pro-apoptotic sequence. Homing domains have been designed to target angiogenic tumor cells, prostate cells, arthritic tissue and, most recently, adipose tissue. After a receptor-mediated internalization, the apoptotic sequence, which contains D-enantiomer amino acids, initiates apoptosis through mitochondrial membrane disruption. We have begun structure and functional studies on a peptide (HKP1) that specifically targets angiogenic tumor cells for apoptosis. As a model for mitochondrial membrane disruption, we have examined peptide-induced leakage of a calcein fluorophore from large unilamellar vesicles. These experiments demonstrate more potent leakage activity by HKP1 than the peptide lacking the homing domain. Circular dichroism and 2D homonuclear NMR experiments demonstrate that this tumor-specific HKP adopts a left-handed amphipathic helix in association with dodecylphosphorylcholine micelles in a parallel orientation to the lipid-water interface with the homing domain remaining exposed to solvent. The amphipathic helix of the apoptotic domain orients with nonpolar leucine and alanine residues inserting most deeply into the lipid environment.  相似文献   

5.
The magainins, peptide antibiotics secreted by the frog Xenopus laevis, have previously been shown to permeabilize phospholipid vesicles. To elucidate the mechanism of permeabilization, we have conducted detailed kinetic studies of magainin 2 amide (mgn2a)-induced release of 6-carboxyfluorescein from vesicles of phosphatidylserine. The results show that dye release occurs in (at least) two stages--an initial rapid phase, with t1/2 approximately 3 s, followed by a much slower phase that approaches zero leakage rate before all the dye is released. Light-scattering studies showed that mgn2a does not cause gross changes in vesicle structure. The peptide was found to rapidly equilibrate between vesicles; this was demonstrated by determining a binding isotherm for the peptide-lipid interaction, and by showing that addition of unloaded vesicles rapidly quenches peptide-induced leakage from loaded vesicles. Transient dye release in the presence of an equilibrating peptide can be explained in two ways: (1) the peptide exists only transiently in an active form; (2) the vesicles are only transiently leaky. Preincubation of mgn2a at assay concentrations in buffer alone or with unloaded vesicles did not inactivate the peptide. Therefore, rapid leakage is probably due to transient destabilization of the vesicle upon addition of mgn2a.  相似文献   

6.
R A Parente  S Nir  F C Szoka 《Biochemistry》1990,29(37):8720-8728
  相似文献   

7.
A synthetic, amphipathic 30-amino acid peptide with the major repeat unit Glu-Ala-Leu-Ala (GALA) was designed to mimic the behavior of the fusogenic sequences of viral fusion proteins. GALA is a water-soluble peptide with an aperiodic conformation at neutral pH and becomes an amphipathic alpha-helix as the pH is lowered to 5.0 where it interacts with bilayers. Fluorescence energy transfer measurements indicated that GALA induced lipid mixing between phosphatidylcholine small unilamellar vesicles but not large unilamellar vesicles. This lipid mixing occurred only at pH 5.0 and not at neutral pH. Concomitant with lipid mixing, the vesicles increased in diameter from 500 to 750 to 1000 A as measured by dynamic light scattering and internal volume determination. GALA induced leakage of small molecules (Mr 450) at pH 5.0 was too rapid to permit detection of contents mixing. However, retention of larger molecules (Mr 4100) under the same conditions suggests that vesicle fusion is occurring. For a 100/1 lipid/peptide ratio all vesicles fused just once, whereas for a 50/1 ratio higher order fusion products formed. A mass action model gives good simulation of the kinetics of increase in fluorescence intensity and yields rate constants of aggregation and fusion. As the lipid to peptide ratio decreases from 100/1 to 50/1 both rate constants of aggregation and fusion increase, indicating that GALA is a genuine inducer of vesicle fusion. The presence of divalent cations which can alter GALAs conformation at pH 7.5 had little effect on its lipid mixing activity. GALA was modified by altering the sequence while keeping the amino acid composition constant or by shortening the sequence. These peptides did not have any lipid mixing activity nor did they induce an increase in vesicle size. Together, these results indicate that fusion of phosphatidylcholine small unilamellar vesicles induced by GALA requires both a peptide length greater than 16 amino acids as well as a defined topology of the hydrophobic residues.  相似文献   

8.
The amino terminal 1-18 domain of dermaseptin s is an important determinant of its structure as well as the antibacterial activity. A thorough investigation on the structure of the 18-residue peptide (D18) and its binding to model membranes in presence of salt and denaturant guanidinium chloride has been carried out. In presence of salt, there is an increase in the fraction of peptide molecules in helical conformation. In presence of the denaturant, D18 is unordered, but addition of the structure-promoting solvent trifluoroethanol results in a transition to the helical conformation. In presence of denaturant, the peptide is unordered, but binding to lipid vesicles is not abolished. Investigation of model membrane permeabilizing ability of the peptide in solutions containing various proportions of sodium chloride and guanidinium chloride indicates that vesicle permeabilization parallels extent of binding. The peptide thus binds to lipid vesicles in an unfolded state. Since the peptide has propensity to fold into a helical conformation, lipid induced transition to a helical structure occurs, followed by membrane permeabilization as a result of pore formation.  相似文献   

9.
Powers JP  Tan A  Ramamoorthy A  Hancock RE 《Biochemistry》2005,44(47):15504-15513
The horseshoe crab cationic antimicrobial peptide polyphemusin I is highly active in vitro but not protective in mouse models of bacterial and LPS challenge, while a synthetic polyphemusin variant, PV5, was previously shown to be protective in vivo. In this study, we investigated the interaction of these peptides with lipid membranes in an effort to propose a mechanism of interaction. The solution structure of PV5 was determined by proton NMR in the absence and presence of dodecylphosphocholine (DPC) micelles. Like polyphemusin I, PV5 is a beta-hairpin but appeared less amphipathic in solution. Upon association with DPC micelles, PV5 underwent side chain rearrangements which resulted in an increased amphipathic conformation. Using fluorescence spectroscopy, both peptides were found to have limited affinity for neutral vesicles composed of phosphatidylcholine (PC). Incorporation of 25 mol % cholesterol or phosphatidylethanolamine into PC vesicles produced little change in the partitioning of either peptide. Incorporation of 25 mol % phosphatidylglycerol (PG) into PC vesicles, a simple prokaryotic model, resulted in a large increase in the affinity for both peptides, but the partition coefficient for PV5 was almost twice that of polyphemusin I. Differential scanning calorimetry studies supported the partitioning data and demonstrated that neither peptide interacted readily with neutral PC vesicles. Both peptides showed affinity for negatively charged membranes incorporating PG. The affinity of PV5 was much greater as the pretransition peak was absent at low peptide to lipid ratios (1:400) and the reduction in enthalpy of the main transition was greater than that produced by polyphemusin I. Both peptides decreased the lamellar to inverted hexagonal phase transition temperature of PE indicating the induction of negative curvature strain. These results, combined with previous findings that polyphemusin I promotes lipid flip-flop but does not induce significant vesicle leakage, ruled out the torroidal pore and carpet mechanisms of antimicrobial action for these polyphemusins.  相似文献   

10.
Leakage from liposomes induced by several peptides is reviewed and a pore model is described. According to this model peptide molecules become incorporated into the vesicle bilayer and aggregate reversibly or irreversibly within the surface. When a peptide aggregate reaches a critical size, peptide translocation can occur and a pore is formed. With the peptide GALA the pores are stable and persist for at least 10 minutes. The model predicts that for a given lipid/peptide ratio, the extent of leakage should decrease as the vesicle diameter decreases, and for a given amount of peptide bound per vesicle less leakage would be observed at higher temperatures due to the increase in reversibility of surface aggregates of the peptide. Effect of membrane composition on pore formation is reviewed. When cholesterol was included in the liposomes the efficiency of inducation of leakage by the peptide GALA was reduced due to reduced binding and increased reversibility of surface aggregation of the peptide. Phospholipids which contain less ordered acyl-chains and have a slightly wedge-like shape, can better accommodate peptide surface aggregates, and consequently insertion and translocation of the peptide may be less favored. Demonstrations of antagonism between pore formation and fusion are presented. The choice of factors which promote vesicle aggregation, e.g., larger peptides, increased vesicle and peptide concentration results in enhanced vesicle fusion at the expense of formation of intravesicular pores. FTIR studies with HIV-1 fusion peptides indicate that in systems where extensive vesicle fusion occurred the beta conformation of the peptides was predominant, whereas the alpha conformation was exhibited in cases where leakage was the main outcome. Antagonism between leakage and fusion was exhibited by 1-palmitoyl-2-oleoylphosphatidylglycerol vesicles, where the order of addition of peptide (HIV(arg)) or Ca(2+)dictated whether pore formation or vesicle fusion would occur. The current study emphasizes that the addition of Ca(2+), which promotes vesicle aggregation can also reduce peptide translocation in isolated vesicles.  相似文献   

11.
M E Haque  A J McCoy  J Glenn  J Lee  B R Lentz 《Biochemistry》2001,40(47):14243-14251
The effects of hemagglutinin (HA) fusion peptide (X-31) on poly(ethylene glycol)- (PEG-) mediated vesicle fusion in three different vesicle systems have been compared: dioleoylphosphatidylcholine (DOPC) small unilamellar vesicles (SUV) and large unilamellar vesicles (LUV) and palmitoyloleoylphosphatidylcholine (POPC) large unilamellar perturbed vesicles (pert. LUV). POPC LUVs were asymmetrically perturbed by hydrolyzing 2.5% of the outer leaflet lipid with phospholipase A(2) and removing hydrolysis products with BSA. The mixing of vesicle contents showed that these perturbed vesicles fused in the presence of PEG as did DOPC SUV, but unperturbed LUV did not. Fusion peptide had different effects on the fusion of these different types of vesicles: fusion was not induced in the absence of PEG or in unperturbed DOPC LUV even in the presence of PEG. Fusion was enhanced in DOPC SUV at low peptide surface occupancy but hindered at high surface occupancy. Finally, fusion was hindered in proportion to peptide concentration in perturbed POPC LUV. Contents leakage assays demonstrated that the peptide enhanced leakage in all vesicles. The peptide enhanced lipid transfer between both fusogenic and nonfusogenic vesicles. Peptide binding was detected in terms of enhanced tryptophan fluorescence or through transfer of tryptophan excited-state energy to membrane-bound diphenylhexatriene (DPH). The peptide had a higher affinity for vesicles with packing defects (SUV and perturbed LUV). Quasi-elastic light scattering (QELS) indicated that the peptide caused vesicles to aggregate. We conclude that binding of the fusion peptide to vesicle membranes has a significant effect on membrane properties but does not induce fusion. Indeed, the fusion peptide inhibited fusion of perturbed LUV. It can, however, enhance fusion between highly curved membranes that normally fuse when brought into close contact by PEG.  相似文献   

12.
Synthetic peptides representing amino acid residues 1-16 and 1-20, a proposed fusogenic region of the HA-2 subunit of influenza virus hemagglutinin, bind to phosphatidylcholine vesicles with submicromolar dissociation constants. The 1-20, but not the 1-16, peptide appears to adopt a helical conformation when bound to vesicles and cooperatively promotes vesicle fusion.  相似文献   

13.
Abstract

The peptide HIVarg, corresponding to a sequence of 23 amino acid residues at the N-terminus of HIV-1 gp41, has the capacity to induce fusion of large unilamellar vesicles (LUV) consisting of negatively charged or zwitter-ionic phospholipids. In the present study, we further characterize this destabilization and fusion process using LUV consisting of phosphatidylcholine, phosphatidylethanolamine and cholesterol (molar ratio, 1:1:1). Evidence for fusion includes a demonstration of membrane lipid mixing as well as mixing of aqueous vesicle contents. Kinetic analysis of the overall process of vesicle aggregation and fusion revealed that the rate constant of the fusion step per se increased dramatically with the peptide-to-lipid molar ratio, indicating that the peptide acts as a true fusogen. The peptide caused the release of small molecules (Ants/DPX), whereas large solutes (Fitc-dextran, MWav 19,600) were partly retained. The estimated critical number of peptides per vesicle necessary to release vesicle contents, M = 2-4, indicates that leakage does not involve the formation of classical pores. Infrared spectroscopy of the peptide in the presence of liposomes demonstrated that the equilibrium conformation of the membrane-bound peptide is an antiparallel β-structure. This finding supports the notion that the HTV fusion peptide in a β-conformation has the capacity to perturb vesicle bilayers, inducing initial permeabilization and subsequent membrane fusion.  相似文献   

14.
The solution properties and bilayer association of two synthetic 30 amino acid peptides, GALA and LAGA, have been investigated at pH 5 and 7.5. These peptides have the same amino acid composition and differ only in the positioning of glutamic acid and leucine residues which together compose 47% of each peptide. Both peptides undergo a similar coil to helix transition as the pH is lowered from 7.5 to 5.0. However, GALA forms an amphipathic alpha-helix whereas LAGA does not. As a result, GALA partitions into membranes to a greater extent than LAGA and can initiate leakage of vesicle contents and membrane fusion which LAGA cannot (Subbarao et al., 1987; Parente et al., 1988). Membrane association of the peptides has been studied in detail with large phosphatidylcholine vesicles. Direct binding measurements show a strong association of the peptide GALA to vesicles at pH 5 with an apparent Ka around 10(6). The single tryptophan residue in each peptide can be exploited to probe peptide motion and positioning within lipid bilayers. Anisotropy changes and the quenching of tryptophan fluorescence by brominated lipids in the presence of vesicles also indicate that GALA can interact with uncharged vesicles in a pH-dependent manner. By comparison to the peptide LAGA, the membrane association of GALA is shown to be due to the amphipathic nature of its alpha-helical conformation at pH 5.  相似文献   

15.
BID is a BH3 domain-only member of the Bcl-2 family that acts as an apoptotic agonist in programmed cell death. After cleavage by caspase-8, the N-terminal of BID (N-BID) stays in the cytosol while the C-terminal of BID (C-BID) translocates to mitochondria, leading to cytochrome c release in vivo and in vitro. We have previously reported that BID or truncated BID (tBID) can induce the release of entrapped trypsin and cytochrome c from large unilamellar vesicles (LUVs). Further studies have been performed and are presented here; the results demonstrate that C-BID, like BID and tBID, induces vesicle leakage, whereas N-BID or the BID mutants BID (D59A) and BID (G94E) fail to have any significant effects. The affinity of the above-mentioned proteins for soybean phospholipid LUVs (SLUVs) decreased in an order similar to their leakage-inducing capability: tBID > BID > BID (D59A), while N-BID and BID (G94E) were unable to bind to the vesicles at all. BID-induced leakage was dependent on the lipid composition of vesicles. Acidic phospholipid (e.g. phosphatidic acid or phosphatidylglycerol) was necessary for BID-induced leakage while the presence of phosphatidylethanolamine or cholesterol reduced the leakage. It was also found C-BID is better able to penetrate the soybean phospholipid monolayer than BID or tBID. A further finding was that tBID, but not full-length BID, could stimulate the aggregation of SLUVs. Finally, Bcl-x(L), an apoptotic antagonist in programmed cell death, can prevent the aggregation of LUVs induced by tBID, but not the release of entrapped trypsin. It is postulated that two separate domains of tBID are responsible for inducing leakage and aggregation of phospholipid vesicles.  相似文献   

16.
We have synthesized five amphiphilic anionic peptides derived from E5 peptide [Murata, M., Takahashi, S., Kagiwada, S., Suzuki, A., Ohnishi, S. 1992. Biochemistry 31:1986-1992. E5NN and E5CC are duplications of the N-terminal and the C-terminal halves of E5, respectively, and E5CN is an inversion of the N- and the C-terminal halves. E5P contains a Pro residue in the center of E5 and E8 has 8 Glu residues and 9 Leu residues. We studied fusion of dioleoylphosphatidylcholine (DOPC) large unilamellar vesicles assayed by fluorescent probes. The peptides formed alpha-helical structure with different degrees; E5NN, E5CN, and E8 with high helical content and E5CC and E5P with low helical content. These peptides bound to DOPC vesicles at acidic pH in proportion to the helical content of peptide. The peptides caused leakage of DOPC vesicles which increased with decreasing pH. The leakage was also proportional to the helicity of peptide. Highly helical peptides E5NN, E5CN, and E8 caused hemolysis at acidic pH but not at neutral pH. The fusion activity was also dependent on the helicity of peptides. In fusion induced by an equimolar mixture of E5 analogues and K5 at neutral pH, E8, E5NN, and E5CN were most active but E5CC did not cause fusion. In fusion induced by E5-analogue peptides alone, E5CN was active at acidic pH but not at neutral pH. Other peptides did not cause fusion. Amphiphilic peptides also appear to require other factors to cause fusion.  相似文献   

17.
Amyloid aggregates, found in patients that suffer from Alzheimer's disease, are composed of fibril-forming peptides in a beta-sheet conformation. One of the most abundant components in amyloid aggregates is the beta-amyloid peptide 1-42 (Abeta 1-42). Membrane alterations may proceed to cell death by either an oxidative stress mechanism, caused by the peptide and synergized by transition metal ions, or through formation of ion channels by peptide interfacial self-aggregation. Here we demonstrate that Langmuir films of Abeta 1-42, either in pure form or mixed with lipids, develop stable monomolecular arrays with a high surface stability. By using micropipette aspiration technique and confocal microscopy we show that Abeta 1-42 induces a strong membrane destabilization in giant unilamellar vesicles composed of palmitoyloleoyl-phosphatidylcholine, sphingomyelin, and cholesterol, lowering the critical tension of vesicle rupture. Additionally, Abeta 1-42 triggers the induction of a sequential leakage of low- and high-molecular-weight markers trapped inside the giant unilamellar vesicles, but preserving the vesicle shape. Consequently, the Abeta 1-42 sequence confers particular molecular properties to the peptide that, in turn, influence supramolecular properties associated to membranes that may result in toxicity, including: 1), an ability of the peptide to strongly associate with the membrane; 2), a reduction of lateral membrane cohesive forces; and 3), a capacity to break the transbilayer gradient and puncture sealed vesicles.  相似文献   

18.
19.
Interaction of wheat alpha-thionin with large unilamellar vesicles.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction of the wheat antibacterial peptide alpha-thionin with large unilamellar vesicles has been investigated by means of fluorescence spectroscopy. Binding of the peptide to the vesicles is followed by the release of vesicle contents, vesicle aggregation, and lipid mixing. Vesicle fusion, i.e., mixing of the aqueous contents, was not observed. Peptide binding is governed by electrostatic interactions and shows no cooperativity. The amphipatic nature of wheat alpha-thionin seems to destabilize the membrane bilayer and trigger the aggregation of the vesicles and lipid mixing. The presence of distearoylphosphatidylethanolamine-poly(ethylene glycol 2000) (PEG-PE) within the membrane provides a steric barrier that inhibits vesicle aggregation and lipid mixing but does not prevent leakage. Vesicle leakage through discrete membrane channels is unlikely, because the release of encapsulated large fluorescent dextrans is very similar to that of 8-aminonaphthalene-1,3,6,trisulfonic acid (ANTS). A minimum number of 700 peptide molecules must bind to each vesicle to produce complete leakage, which suggests a mechanism in which the overall destabilization of the membrane is due to the formation of transient pores rather than discrete channels.  相似文献   

20.
Bcl-2 homology domain-3 (BH3) peptides are potent cancer therapeutic reagents that target regulators of apoptotic cell death in cancer cells. However, their cytotoxic effects are affected by different expression levels of Bcl-2 family proteins. We recently found that the amphipathic tail-anchoring peptide (ATAP) from Bfl-1, a bifunctional Bcl-2 family member, produced strong pro-apoptotic activity by permeabilizing the mitochondrial outer membrane. Here, we test whether the activity of ATAP requires other cellular factors and whether ATAP has an advantage over the BH3 peptides in targeting cancer cells. Confocal microscopic imaging illustrates specific targeting of ATAP to mitochondria, whereas BH3 peptides show diffuse patterns of cytosolic distribution. Although the pro-apoptotic activities of BH3 peptides are largely inhibited by either overexpression of anti-apoptotic Bcl-2 or Bcl-xL or nullification of pro-apoptotic Bax and Bak in cells, the pro-apoptotic function of ATAP is not affected by these cellular factors. Reconstitution of synthetic ATAP into liposomal membranes results in release of fluorescent molecules of the size of cytochrome c from the liposomes, suggesting that the membrane permeabilizing activity of ATAP does not require additional protein factors. Because ATAP can target to the mitochondrial membrane and its pro-apoptotic activity does not depend on the content of Bcl-2 family proteins, it represents a promising candidate for anti-cancer drugs that can potentially overcome the intrinsic apoptosis-resistant nature of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号