首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Garaguso I  Borlak J 《Proteomics》2008,8(13):2583-2595
The analytical performance of MALDI-MS is highly influenced by sample preparation and the choice of matrix. Here we present an improved MALDI-MS sample preparation method for peptide mass mapping and peptide analysis, based on the use of the 2,5-dihydroxybenzoic acid matrix and prestructured sample supports, termed: matrix layer (ML). This sample preparation is easy to use and results in a rapid automated MALDI-MS and MS/MS with high quality spectra acquisition. The between-spot variation was investigated using standard peptides and statistical treatment of data confirmed the improvement gained with the ML method. Furthermore, the sample preparation method proved to be highly sensitive, in the lower-attomole range for peptides, and we improved the performance of MALDI-MS/MS for characterization of phosphopeptides as well. The method is versatile for the routine analysis of in-gel tryptic digests thereby allowing for an improved protein sequence coverage. Furthermore, reliable protein identification can be achieved without the need of desalting sample preparation. We demonstrate the performance and the robustness of our method using commercially available reference proteins and automated MS and MS/MS analyses of in-gel digests from lung tissue lysate proteins separated by 2-DE.  相似文献   

2.
Direct matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of human serum yielded ion signals from only a fraction of the total number of peptides and proteins expected to be in the sample. We increased the number of peptide and protein ion signals observed in the MALDI-TOF mass spectra analysis of human serum by using a prefractionation protocol based on liquid phase isoelectric focusing electrophoresis. This pre-fractionation technique facilitated the MALDI-TOF MS detection of as many as 262 different peptide and protein ion signals from human serum. The results obtained from three replicate fractionation experiments on the same serum sample indicated that 148 different peptide and protein ion signals were reproducibly detected using our isoelectric focusing and MALDI-TOF MS protocol.  相似文献   

3.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.  相似文献   

4.
We report the development of a robust interface for off-line coupling of nano liquid chromatography (LC) to matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) and its application to the analysis of proteolytic digests of proteins, both isolated and in mixtures. The interface makes use of prestructured MALDI sample supports to concentrate the effluent to a small sample plate area and localize the MALDI sample to a predefined array, thereby enriching the analyte molecules and facilitating automated MALDI-MS analysis. Parameters that influence the preparation of MALDI samples from the LC effluent were evaluated with regard to detection sensitivity, spectra quality, and reproducibility of the method. A procedure for data processing is described. The presented nano LC MALDI-MS system allowed the detection of several peptides from a tryptic digest of bovine serum albumin, at analyzed amounts corresponding to one femtomole of the digested protein. For the identification of native proteins isolated from mouse brain by two-dimensional gel electrophoresis, nano LC MALDI-MS increased the number of detected peptides, thereby allowing identification of proteins that could not be identified by direct MALDI-MS analysis. The ability to identify proteins in complex mixtures was evaluated for the analysis of Escherichia coli 50S ribosomal subunit. Out of the 33 expected proteins, 30 were identified by MALDI tandem time of flight fragment ion fingerprinting.  相似文献   

5.
Recent advances in MALDI MS/MS instrumentation allow a high degree of automation in the efficient detection of peptide fragment ions that can be used for protein identification. However, the performance of the technique is dependent on the MALDI sample preparation. We present a simple and robust two-layer sample preparation method tailored for sensitive and reproducible generation of MALDI MS/MS data. This method produces a strong and uniform crystal layer which allows acquisition of high quality MS/MS spectra over the entire sample surface area. Furthermore, due to its crystal strength, the matrix/sample layer can be washed extensively on target, enabling direct analysis of samples containing impurities, such as salts and surfactants. This method is demonstrated to be very useful in routine analysis of in-gel tryptic digests of silver-stained protein gel spots, without the need of desalting steps or hunting for "hot" spots. As an example, seven threonine-phosphorylated proteins involved in signal transduction in response to growth factor stimulation within the lipid raft fractions of the IMR5 neuroblastoma cells have been identified using differential gel display, in-gel digestion and MALDI MS/MS with the new two-layer sample preparation method. Some of these proteins have the functions of maintaining raft structure or cell signaling.  相似文献   

6.
The beneficial use of NC in MALDI‐MS has previously been reported to provide better S/N and reproducibility as well as less alkali metal adducts. We have therefore investigated if additional beneficial properties of NC also existed for commonly employed proteomics‐based LC‐MALDI procedures. Specifically we studied the effects of NC as a matrix cofactor for prestructured sample supports (AnchorChip plates), and compared the performance with several alternative sample preparation methods recently reported in the literature. The work reported here describes a new method of mixing the NC‐matrix solution with the LC‐eluent prior to sample deposition and shows that a mixture of CHCA and NC in a complex solvent offers superior analytical results in several ways: most striking is the higher signal intensity, and that the signals last much longer, due to the robustness of the matrix formulation. We have tested the use of the nitromatrix on a single LC‐MALDI preparation and found that at least ten reiterative analyses could be performed, resulting in total analysis times of more than 75 h (approximately 15 million laser shots). Consequently more than twice as many proteins could be identified than from a single analysis. This combination of longer, and stronger, MALDI signals provided an increase in the number of peptides, greater sequence coverage in MS/MS experiments and ultimately more confident peptide assignments.  相似文献   

7.
Evaluation of cellular processes and their changes at the level of protein expression and post-translational modifications may allow identification of novel proteins and the mechanisms involved in pathogenic processes. However, the number of proteins and, after tryptic digestion, of peptides from a single cell can be tremendously high. Separation and analysis of such complex peptide mixtures can be performed using multidimensional separation techniques such as two-dimensional gel electrophoresis or two-dimensional-high-performance liquid chromatography (2-D-HPLC). The aim of this work was to establish a fully automated on-line 2-D-HPLC separation method with column switching for the separation of complex tryptic digests. A model mixture of five proteins as well as a nuclear matrix protein sample were digested with trypsin and separated using a strong cation exchange (SCX) column in the first dimension and nano reversed phase in the second dimension. Separated peptides were detected using an ion trap mass spectrometer. The advantages of this new fully automated method are rapid sample loading, the possibility of injecting large volumes and no introduction of salt into the mass spectrometer. Furthermore, column switching allows the independent control and optimization of the two dimensions independently.  相似文献   

8.
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has become a fundamental tool for the identification and analysis of peptides and proteins. MALDI-TOF is well suited for the analysis of complex biological mixtures because samples are crystallized onto a solid support that can be washed to remove contaminants and salts prior to laser desorption. A number of approaches for immobilizing samples onto MALDI targets have been put forth. These include the use of different chemical matrices and the immobilization of samples onto different solid supports. In large part though, the preparation of MALDI targets has been an empirical exercise that often requires a unique series of conditions for every sample. Here, a simple method for the application of peptide mixtures onto MALDI targets is put forth. This method differs because peptides are added directly to a sample of nitrocellulose dissolved in acetone, allowing them to interact in solution-phase organic solvent. This solution-phase mixture is then spotted to the MALDI target and evaporated, forming a homogenous solid surface for laser desorption. This procedure is robust, highly sensitive, tolerant to detergents, and easily learned. In our hands, the method provides as much as a 10-fold enhancement to the detection of tryptic peptide fragments derived from in-gel digests.  相似文献   

9.
We report on the simple application of a new nanostructured silicon (NanoSi) substrate as laser desorption/ionization (LDI)-promoting surface for high-throughput identification of protein tryptic digests by a rapid MS profiling and subsequent MS/MS analysis. The NanoSi substrate is easily prepared by chemical etching of crystalline silicon in NH(4)F/HNO(3)/AgNO(3) aqueous solution. To assess the LDI performances in terms of sensitivity, repeatability and robustness, the detection of small synthetic peptides (380-1700Da) was investigated. Moreover, peptide sequencing was tackled. Various tryptic synthetic peptide mixtures were first characterized in MS and MS/MS experiments carried out on a single deposit. Having illustrated the capability to achieve peptide detection and sequencing on these ionizing surfaces in the same run, protein tryptic digests from Cytochrome C, β-Casein, BSA and Fibrinogen were then analyzed in the femtomolar range (from 50 fmol for Cytochrome C down to 2 fmol for Fibrinogen). Comparison of the NanoSi MS and MS/MS data with those obtained with sample conditioned in organic matrix demonstrated a great behavior for low mass responses. We demonstrated the capability of LDI on NanoSi to be a complementary method to MALDI peptide mass fingerprinting ensuring determination of peptide molecular weights and sequences for more efficient protein database searches.  相似文献   

10.
Attempts at protein profiling in the alkaline pH region using isoelectric focusing have often proved difficult, greatly limiting the scope of proteome analysis. We investigated several parameters using custom pH 8-11 immobilized pH gradients to separate a Caulobacter crescentus membrane preparation. These included sample application, quenching endoosomotic flow and gel matrix composition. Among these factors, the sample application position was the predominant parameter to affect two-dimensional gel quality. Separated proteins were silver stained and profiled using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The use of a prototype MALDI-Q-Tof mass spectrometer assisted identification of several proteins by providing highly informative peptide fragmentation data from the sample digests. Thirty-two unique alkaline proteins were identified in this study, which complements our previously described C. crescentus membrane proteome. Our experiments point towards new options for proteomic researchers aiming to both extend the scope of analysis, and simplify methods of identifying proteins with high confidence.  相似文献   

11.
Nanostructure-initiator mass spectrometry (NIMS) is a new surface-based MS technique that uses a nanostructured surface to trap liquid ('initiator') compounds. Analyte materials adsorbed onto this 'clathrate' surface are subsequently released by laser irradiation for mass analysis. In this protocol, we describe the preparation of NIMS surfaces capable of producing low background and high-sensitivity mass spectrometric measurement using the initiator compound BisF17. Examples of analytes that adsorb to this surface are small molecules, drugs, lipids, carbohydrates and peptides. Typically, NIMS is used to analyze samples ranging from simple analytical standards and proteolytic digests to more complex samples such as tissues, cells and biofluids. Critical experimental considerations of NIMS are described. Specifically, NIMS sensitivity is examined as a function of pre-etch cleaning treatment, etching current density, etching time, initiator composition, sample concentration, sample deposition method and laser fluence. Typically, NIMS surface preparation can be completed in less than 2 h. Subsequent sample preparation requires 1-5 min, depending on sample deposition method. Mass spectrometric data acquisition typically takes 1-30 s per sample.  相似文献   

12.
MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 μg/mm2. Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.  相似文献   

13.

Background

High resolution mass spectrometry has been employed to rapidly and accurately type and subtype influenza viruses. The detection of signature peptides with unique theoretical masses enables the unequivocal assignment of the type and subtype of a given strain. This analysis has, to date, required the manual inspection of mass spectra of whole virus and antigen digests.

Results

A computer algorithm, FluTyper, has been designed and implemented to achieve the automated analysis of MALDI mass spectra recorded for proteolytic digests of the whole influenza virus and antigens. FluTyper incorporates the use of established signature peptides and newly developed naïve Bayes classifiers for four common influenza antigens, hemagglutinin, neuraminidase, nucleoprotein, and matrix protein 1, to type and subtype the influenza virus based on their detection within proteolytic peptide mass maps. Theoretical and experimental testing of the classifiers demonstrates their applicability at protein coverage rates normally achievable in mass mapping experiments. The application of FluTyper to whole virus and antigen digests of a range of different strains of the influenza virus is demonstrated.

Conclusions

FluTyper algorithm facilitates the rapid and automated typing and subtyping of the influenza virus from mass spectral data. The newly developed naïve Bayes classifiers increase the confidence of influenza virus subtyping, especially where signature peptides are not detected. FluTyper is expected to popularize the use of mass spectrometry to characterize influenza viruses.  相似文献   

14.
A new method for on-plate protein digestion and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry analysis is proposed involving an automated one-step sample separation using nanoflow HPLC followed by nanoliter fraction collection and on-plate digestion with trypsin. This procedure uses a commercial automatic nanoliter fraction collection system for on-line spotting of the eluent onto a MALDI target. After protein digestion, the reaction is stopped by the addition of acidified matrix using the same automated system. Collected spots are subsequently analyzed using a MALDI tandem time-of-flight (TOF/TOF) mass spectrometer for protein sequencing and identification.  相似文献   

15.
Phosphoamino acid modifications on substrate proteins are critical components of protein kinase signaling pathways. Thus, diverse methodologies have been developed and applied to identify the sites of phosphorylated amino acids within proteins. Despite significant progress in the field, even the determination of phosphorylated residues in a given highly purified protein is not a matter of routine and can be difficult and time-consuming. Here we present a practicable approach that integrates into a liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry (LC–MALDI MS) workflow and allows localization and quantification of phosphorylated peptides on the MALDI target plate prior to MS analysis. Tryptic digests of radiolabeled proteins are fractionated by reversed-phase LC directly onto disposable MALDI target plates, followed by autoradiographic imaging. Visualization of the radiolabel enables focused analysis of selected spots, thereby accelerating the process of phosphorylation site mapping by decreasing the number of spectra to be acquired. Moreover, absolute quantification of the phosphorylated peptides is permitted by the use of appropriate standards. Finally, the manual sample handling is minimal, and consequently the risk of adsorptive sample loss is very low. Application of the procedure allowed the targeted identification of six novel autophosphorylation sites of AMP-activated protein kinase (AMPK) and displayed additional unknown phosphorylated peptide species not amenable to detection by MS. Furthermore, autoradiography revealed topologically inhomogeneous distribution of phosphorylated peptides within individual spots. However, accurate analysis of defined areas within single spots suggests that, rather than such quantitative differences, mainly the manner of matrix crystallization significantly affects ionization of phosphopeptides.  相似文献   

16.
We describe a novel tissue profiling strategy that improves the cellular specificity and analysis throughput of protein profiles obtained by direct MALDI analysis. The new approach integrates the cellular specificity of histology, the accuracy and reproducibility of robotic liquid dispensing, and the speed and objectivity of automated spectra acquisition. Traditional methodologies for preparing and analyzing tissue samples rely heavily on manual procedures, which for various reasons discussed, restrict cellular specificity and sample throughput. Here, a robotic spotter deposits micron-sized droplets of matrix precisely onto foci of normal mammary epithelium, ductal carcinoma in situ, invasive mammary cancer, and peritumoral stroma selected by a pathologist from high resolution histological images of sectioned human breast cancer samples. The location of each matrix spot was then determined and uploaded into the instrument to facilitate automated profile acquisition by MALDI-TOF. In the example shown, the different lesions were clearly differentiated using mass profiling. Further, the workflow permits a visual projection of any information produced from the profile analyses directly on the histological image for a unique combination of proteomic and histological assessment of sample regions. The higher performance characteristics offered by the new workflow promises to be a significant advancement toward the next generation of tissue profiling studies.  相似文献   

17.
A non-aqueous reverse-phase HPLC method, based on two columns in series, has been used to separate the major triacylglycerols (TAGs) from commercial castor oil and to perform either on-line negative ion atmospheric pressure chemical ionisation (APCI), or off-line positive ion matrix-assisted laser desorption ionisation (MALDI)/MS. The resulting Mass Spectra showed chloride-attached TAG molecules [M + CI]- in the case of negative-ion APCI, and sodium-attached TAG molecules [M + Na]+ in the case of positive-ion MALDI. For MALDI time-of-flight (TOF)/MS, a liquid binary matrix system consisting of sodium ferrocyanide and glycerol was applied, resulting in excellent TAG sensitivity, which was necessary for the determination of trace amounts of TAGs in castor oil. Both techniques allowed unambiguous molecular mass determination of the intact TAG molecules with no thermal degradation. Furthermore, seamless post source decay (PSD) fragment ion analysis by means of a curved field reflector TOF mass spectrometer allowed the determination of the fatty acid composition of each individual TAG. Castor oil contained eight different TAGs which were successfully determined by both APCI and MALDI techniques. In each TAG, at least two units of 12-hydroxy-9-octadecenoic acid (ricinoleic acid) were present. The following fatty acids were determined by seamless PSD fragment ion analysis and APCI/MALDI molecular mass determination as TAG substructures: ricinoleic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, dihydroxy stearic acid and eicosenoic acid. Triricinolein was the dominating TAG.  相似文献   

18.
Alpha-cyano-4-hydroxycinnamic acid (α-CHCA) as a matrix facilitates the ionization of proteins and peptides in a matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer. The matrix itself also ionizes and so do its sodium and potassium adducts. Matrix clusters and metal ion adducts interfere with peptide ionization and peptide mass spectrum interpretation. These matrix adducts are significantly reduced with addition of ammonium monobasic phosphate or ammonium dibasic citrate to the matrix and sample deposited onto the MALDI target. The reduction of matrix adducts results in the increase of peptide intensity and signal-to-noise ratio as well as in improvement of peptide ionization for samples deposited onto the target at levels of 10 fmol or below. These improvements were particularly significant in the detection of peptides at amol levels when reduced amounts of matrix were also used.  相似文献   

19.
Reversed phase high performance liquid chromatography (HPLC) interfaced to electrospray tandem mass spectrometry (MS/MS) is commonly used for the identification of peptides from proteolytically cleaved proteins embedded in a polyacrylamide gel matrix as well as for metabolomics screening. HPLC separations are time consuming (30-60 min average), costly (columns and mobile phase reagents), and carry the risk of column carry over between samples. The use of a chip-based nano-ESI platform (Advion NanoMate) based on replaceable nano-tips for sample introduction eliminates sample cross-contamination, provides unchanging sample matrix, and enhances spray stability with attendant increases in reproducibility. Recent papers have established direct infusion nano-ESI-MS/MS utilizing the NanoMate for protein identification of gel spots based on full range MS scans with data dependent MS/MS. In a full range scan, discontinuous ion suppression due to sample matrix can impair identification of putative mass features of interest in both the proteomic and metabolomic workflows. In the current study, an extension of an established direct inject nano-ESI-MS/MS method is described that utilizes the mass filtering capability of an ion-trap for ion packet separation into four narrow mass ranges (50 amu overlap) with segment specific dynamic data dependent peak inclusion for MS/MS fragmentation (total acquisition time of 3 minutes). Comparison of this method with a more traditional nanoLC-MS/MS based protocol utilizing solvent/sample stream splitting to achieve nanoflow demonstrated comparable results for protein identification from polyacrylamide gel matrices. The advantages of this method include full automation, lack of cross-contamination, low cost, and high throughput.  相似文献   

20.
BACKGROUND: MALDI-TOF-MS has become an important analytical tool in the identification of proteins and evaluation of their role in biological processes. A typical protocol consists of sample purification, separation of proteins by 2D-PAGE, enzymatic digestion and identification of proteins by peptide mass fingerprint. Unfortunately, this approach is not appropriate for the identification of membrane or low or high pI proteins. An alternative technique uses 1D-PAGE, which results in a mixture of proteins in each gel band. The direct analysis of the proteolytic digestion of this mixture is often problematic because of poor peptide detection and consequent poor sequence coverage in databases. Sequence coverage can be improved through the combination of several matrices. RESULTS: The aim of this study was to trust the MALDI analysis of complex biological samples, in order to identify proteins that interact with the membrane network of keratinocytes. Peptides obtained from protein trypsin digestions may have either hydrophobic or hydrophilic sections, in which case, the direct analysis of such a mixture by MALDI does not allow desorbing of all peptides. In this work, MALDI/MS experiments were thus performed using four different matrices in concert. The data were analysed with three algorithms in order to test each of them. We observed that the use of at least two matrices in concert leads to a twofold increase of the coverage of each protein. Considering data obtained in this study, we recommend the use of HCCA in concert with the SA matrix in order to obtain a good coverage of hydrophilic proteins, and DHB in concert with the SA matrix to obtain a good coverage of hydrophobic proteins. CONCLUSION: In this work, experiments were performed directly on complex biological samples, in order to see systematic comparison between different matrices for real-life samples and to show a correlation that will be applicable to similar studies. When 1D gel is needed, each band may contain a great number of proteins, each present in small amounts. To improve the proteins coverage, we have performed experiments with some matrices in concert. These experiments enabled reliable identification of proteins, without the use of Nanospray MS/MS experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号