首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic architecture of Drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Dilda CL  Mackay TF 《Genetics》2002,162(4):1655-1674
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.  相似文献   

2.
'Evolution Canyon' on Mount Carmel, Israel, displays highly contrasting physical and biotic environments on a micro-geographic scale, and is a natural laboratory for investigating genetic responses to variable and extreme environments across species. Samples of Drosophila melanogaster and D. simulans were collected from three sites each on the north- and south-facing slopes of the canyon along altitudinal transects, and one site on the valley floor. Numbers of abdominal and sternopleural sensory bristles were recorded for each of these subpopulations in three thermal environments. In D. simulans, sternopleural bristle number exhibited micro-geographic differentiation between the north- and south-facing slopes, while abdominal bristle number was stable across subpopulations. In D. melanogaster, the magnitudes of the difference in mean sternopleural bristle number between the north- and south-facing slopes and of mean abdominal bristle number along the altitudinal gradients were both conditional on rearing temperature. Thus, the pattern of genetic variation between sites was consistent with underlying heterogeneity of genetic mechanisms for response to the same environmental gradients between traits and sibling species. In contrast, the genetic architecture of bristle number at the level of variation within populations was very similar between species for the same bristle trait, although the two traits differed in the relative contribution of genotype by temperature and genotype by sex interaction.  相似文献   

3.
We have mapped quantitative trait loci (QTL) harboring naturally occurring allelic variation for Drosophila bristle number. Lines with high (H) and low (L) sternopleural bristle number were derived by artificial selection from a large base population. Isogenic H and L sublines were extracted from the selection lines, and populations of X and third chromosome H/L recombinant isogenic lines were constructed in the homozygous low line background. The polymorphic cytological locations of roo transposable elements provided a dense molecular marker map with an average intermarker distance of 4.5 cM. Two X chromosome and six chromosome 3 QTL affecting response to selection for sternopleural bristle number and three X chromosome and three chromosome 3 QTL affecting correlated response in abdominal bristle number were detected using a composite interval mapping method. The average effects of bristle number QTL were moderately large, and some had sex-specific effects. Epistasis between QTL affecting sternopleural bristle number was common, and interaction effects were large. Many of the intervals containing bristle number QTL coincided with those mapped in previous studies. However, resolution of bristle number QTL to the level of genetic loci is not trivial, because the genomic regions containing bristle number QTL often did not contain obvious candidate loci, and results of quantitative complementation tests to mutations at candidate loci affecting adult bristle number were ambiguous.  相似文献   

4.
Zaprionus indianus is a cosmopolitan drosophilid, of Afrotropical origin, which has recently colonized South America. The sexual dimorphism (SD) of body size is low, males being almost as big as females. We investigated 10 natural populations, 5 from America and 5 from Africa, using the isofemale line technique. Three traits were measured on each fly: wing and thorax length and sternopleural bristle number. Two indices of SD were compared, and found to be highly correlated (r > 0.99). For the sake of simplicity, only the female/male (F/M) ratio was further considered. A significant genetic variability of SD was found in all cases, although with a low heritability (intra-class correlation of 0.13), about half the value found for the traits themselves. For size SD, we did not find any variation among continents or any latitudinal trend, and average values were 1.02 for wing length and 1.01 for thorax length. Bristle number SD was much greater (1.07). Among mass laboratory strains, SD was genetically much more variable than in recently collected populations, a likely consequence of laboratory drift. Altogether, SD, although genetically variable and prone to laboratory drift, is independent of size variations and presumably submitted to a stabilizing selection in nature.  相似文献   

5.
J. D. Fry  K. A. deRonde    TFC. Mackay 《Genetics》1995,139(3):1293-1307
We have conducted genetic analyses of 12 long-term selection lines of Drosophila melanogaster derived from a highly inbred base population, containing new mutations affecting abdominal and sternopleural bristle number. Biometric analysis of the number of effective factors differentiating the selected lines from the base inbred indicated that with the exception of the three lines selected for increased number of abdominal bristles, three or more mutations contributed to the responses of the selection lines. Analysis of the chromosomal distribution of effects revealed that mutations affecting abdominal bristle number occurred on all three major chromosomes. In addition, Y-linked mutations with effects ranging from one to three bristles occurred in all three lines selected for decreased number of abdominal bristles, as well as in one line selected for increased abdominal bristle number. Mutations affecting sternopleural bristle number were mainly on the X and third chromosomes. One abdominal and one sternopleural selection line showed evidence of a segregating lethal with large effects on bristle number. As an indirect test for allelism of mutations occurring in different selection lines, the three lines selected in the same direction for the same trait were crossed in all possible combinations, and selection continued from the F(2) hybrids. Responses of the hybrid lines usually did not exceed those of the most extreme parental lines, indicating that the responses of the parental lines may have been partly due to mutations at the same loci, although other interpretations are possible.  相似文献   

6.
Most characters that distinguish one individual from another, like height or weight, vary continuously in populations. Continuous variation of these ‘quantitative’ traits is due to the simultaneous segregation of multiple quantitative trait loci (QTLs) as well as environmental influences. A major challenge in human medicine, animal and plant breeding and evolutionary genetics is to identify QTLs and determine their genetic properties. Studies of the classic quantitative traits, abdominal and sternopleural bristle numbers of Drosophila, have shown that: (1) many loci have small effects on bristle number, but a few have large effects and cause most of the genetic variation; (2) ‘candidate’ loci involved in bristle development often have large quantitative effects on bristle number; and (3) alleles at QTLs affecting bristle number have variable degrees of dominance, interact with each other, and affect other quantitative traits, including fitness. Lessons learned from this model system will be applicable to studies of the genetic basis of quantitative variation in other species.  相似文献   

7.
The genetic variabilities of sternopleural and abdominal bristle numbers existing in local natural populations were assessed. Using second chromosome lines of Drosophila melanogaster extracted from three natural populations in Japan (the Ishigakijima, Ogasawara and Aomori populations), experiments were conducted to estimate the components of genetic variances, additive and dominance variances. The following results were obtained: For both sternopleural and abdominal bristle numbers, the additive genetic variances (sigma 2A) were much larger than the dominance variances (sigma 2D) especially in the southern populations. For example, in the Ishigakijima population, for females sternopleural bristle numbers of the inversion-free chromosome group, the additive and dominance variances were estimated to be 1.255 +/- 0.2034 and 0.0552 +/- 0.0180, respectively. The magnitudes of the estimates of additive genetic variances were nearly equal from north to south. By comparing the additive genetic variances of the inversion-free chromosome group with those of the In(2L)t-carrying chromosome group, it was inferred that sufficient number of generations to achieve the equilibrium state has not passed since the introduction of a single or a small number of the In(2L)t-carrying chromosomes to the Ishigakijima population.  相似文献   

8.
Macdonald SJ  Long AD 《Genetics》2004,167(4):2127-2131
To extend results from laboratory genetic mapping experiments to natural populations it is necessary to estimate the phenotypic effects attributable to laboratory-identified genetic factors in nature. We retested a polymorphism found to be strongly associated with an increase of 0.35 sternopleural bristles in laboratory strains in two large samples of wild-caught Drosophila melanogaster. Despite >90% power to detect effects as low as 0.27 bristles (<1% of the total variation in bristle number) we did not replicate the association in nature. Potential explanations for this result are explored.  相似文献   

9.
A selection experiment for sternopleural bristle number in Drosophila melanogaster was undertaken to analyze the correlated effects on recombination. Replicate lines were subjected to divergent directional selection and to stabilizing selection. Recombination rates for markers on chromosomes 2 (dp-cn-bw) and 3 (se-ss-ro) were compared to those from a control. All lines responded as predicted for bristle number. Lines selected for both increased and decreased bristle number exhibited significantly increased recombination rates. The predicted recombination response from stabilizing selection is suggested by our data, but only one comparison is statistically significant. These results, taken with other studies, support the proposal that genetic recombination enhances individual fitness when populations are experiencing environmental change. Less conclusively, our results suggest that populations undergoing stabilizing selection may respond by reducing their rates of crossing over.  相似文献   

10.
Imasheva AG  Bubliy OA 《Hereditas》2003,138(3):193-199
Effects of three different larval densities (low, intermediate and high) on phenotypic and genetic variation of four morphological traits (thorax and wing length, sternopleural and abdominal bristle number) were studied in Drosophila melanogaster using the isofemale line technique. Phenotypic variation was found to increase at high larval density in all traits examined. Environmental variance for three traits (exception was sternopleural bristle number) and fluctuating asymmetry for both bilateral traits were also increased under high density conditions. For estimates of genetic variability (among isofemale lines variance, heritability and evolvability), no statistically significant differences among density regimes were detected. However, the trends in changes of these estimates across densities indicated a possibility for enhanced genetic variation under larval crowding for all traits except abdominal bristle number. For the latter trait, genetic variation seemed not to be dependent on density regime. Generally, two metric traits (thorax and wing length) were more affected by larval crowding than two meristic ones (sternopleural and abdominal bristle number). The Results are in complete agreement with those previously obtained for D. melanogaster using extreme temperatures as stress-factors.  相似文献   

11.
Macdonald SJ  Long AD 《Genetics》2007,176(2):1261-1281
We develop and implement a strategy to map QTL in two synthetic populations of Drosophila melanogaster each initiated with eight inbred founder strains. These recombinant populations allow simultaneous estimates of QTL location, effect, and frequency. Five X-linked QTL influencing bristle number were resolved to intervals of approximately 1.3 cM. We confirm previous observations of bristle number QTL distal to 4A at the tip of the chromosome and identify two novel QTL in 7F-8C, an interval that does not include any classic bristle number candidate genes. If QTL at the tip of the X are biallelic they appear to be intermediate in frequency, although there is evidence that these QTL may reside in multiallelic haplotypes. Conversely, the two QTL mapping to the middle of the X chromosome are likely rare: in each case the minor allele is observed in only 1 of the 16 founders. Assuming additivity and biallelism we estimate that identified QTL contribute 1.0 and 8.7%, respectively, to total phenotypic variation in male abdominal and sternopleural bristle number in nature. Models that seek to explain the maintenance of genetic variation make different predictions about the population frequency of QTL alleles. Thus, mapping QTL in eight-way recombinant populations can distinguish between these models.  相似文献   

12.
Both strong directional selection and faster development are thought to destabilize development, giving rise to greater fluctuating asymmetry (FA), although there is no strong empirical evidence supporting this assertion. We compared FA in sternopleural bristle number in four populations ofDrosophila melanogaster successfully selected for faster development from egg to adult, and in four control populations. The fraction of perfectly symmetric individuals was higher in the selected populations, whereas the FA levels did not differ significantly between selected and control populations, clearly indicating that directional selection for faster development has not led to increased FA in sternopleural bristle number in these populations. This may be because: (i) development time and FA are uncorrelated, (ii) faster development does result in FA, but selection has favoured developmentally stable individuals that can develop fast and still be symmetrical, or (iii) the increased fraction of symmetric individuals in the selected populations is an artifact of reduced body size. Although we cannot discriminate among these explanations, our results suggest that the relationship between development time, FA and fitness may be far more subtle than often thought.  相似文献   

13.
Ahuja A  De Vito S  Singh RS 《Genetica》2011,139(4):505-510
Genetic architecture of variation underlying male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila, was examined. First, in order to test for condition dependence, diet was manipulated in a set of ten Drosophila melanogaster full-sib families. We confirmed heightened condition dependent expression of sex comb bristle number and its female homologue (distal transverse row bristles) as compared to non-sex sternopleural bristles. Significant genotype by environment effects were detected for the sex traits indicating a genetic basis for condition dependence. Next we measured sex comb bristle number and sternopleural bristle number, as well as residual mass, a commonly used condition index, in a set of thirty half-sib families. Sire effect was not significant for sex comb and sternopleural bristle number, and we detected a strong dominance and/or maternal effect or X chromosome effect for both traits. A strong sire effect was detected for condition and its heritability was the highest as compared to sex comb and sternopleural bristles. We discuss our results in light of the rapid response to divergent artificial selection for sex comb bristle number reported previously. The nature of genetic variation for male sex traits continues to be an important unresolved issue in evolutionary biology.  相似文献   

14.
Long AD  Lyman RF  Morgan AH  Langley CH  Mackay TF 《Genetics》2000,154(3):1255-1269
A restriction enzyme survey of a 110-kb region including the achaete scute complex (ASC) examined 14 polymorphic molecular markers in a sample of 56 naturally occurring chromosomes. Large insertions as a class were associated with a reduction in both sternopleural and abdominal bristle number, supporting deleterious mutation-selection equilibrium models for the maintenance of quantitative genetic variation. Two polymorphic sites were independently associated with variation in bristle number measured in two genetic backgrounds as assessed by a permutation test. A 6-bp deletion near sc alpha is associated with sternopleural bristle number variation in both sexes and a 3.4-kb insertion between sc beta and sc gamma is associated with abdominal bristle number variation in females. Under an additive genetic model, the small deletion polymorphism near sc alpha accounts for 25% of the total X chromosome genetic variation in sternopleural bristle number, and the 3.4 kb insertion accounts for 22% of the total X chromosome variation in female abdominal bristle number. The observation of common polymorphisms associated with variation in bristle number is more parsimoniously explained by models that incorporate balancing selection or assume variants affecting bristle number are neutral, than mutation-selection equilibrium models.  相似文献   

15.
Summary Four synthetic lines of D. melanogaster selected for low sternopleural bristle number for 50 generations were screened for lethals on chromosome III when their mean score equalled 2.5. Each line originated from a cross between line M (previously selected for the same trait during 130 generations) and a different unselected cage population. Line M was already known to carry a recessive lethal on chromosome III affecting the selected trait, such that the bristle score of the lethal heterozygote was lower than that of the viable homozygote. Tests revealed 18 lethals, 15 of these present in at least two lines. Each line carried from 10 to 16 lethals. All lines carried groups of lethals present on the same chromosome, and at least six lethals in each line were included in such an association with a frequency of 0.18 or higher. It appears that the lethal affecting bristle score in line M has protected a segment of chromosome III from natural selection and that the remaining 14 lethals have accumulated later in that line.  相似文献   

16.
Summary Phenotypic variance for each of several bristle number characters (abdominal, sternopleural, second and third coxal) was partitioned using both hierarchal and dialled designs. Heritabilities and genetic correlations were estimated from parent-offspring regressions and correlations and half-sib correlations.A high proportion of the genetic variance for abdominal bristle number was due to epistatic and sex-linked gene action, but most of the genetic variance for the other characters was additive autosomal.The genetic correlations among sternopleural, and second and third coxal bristle numbers were all high, but that between abdominals and sternopleurals was low, while those between abdominals and either second or third coxals were virtually zero. An appreciable proportion of the covariance between abdominal and sternopleural bristle numbers was non-additive genetic.The diallel method gave more reliable estimates of genetic parameters when non-additive or sex-linked genetic variation was present.
Zusammenfassung Für eine Anzahl verschiedener Borstenzahl-Charaktere (abdominales, sternopleurales, 2. und 3. coxales Segment) wurde die phänotypische Varianz unter Verwendung hierarchischer und dialleler Versuchsanlagen unterteilt. Anhand von Elter-Nachkommen-Regressionen und-Korrelationen und von Halbgeschwister-Korrelationen wurden Heritabilitäten und genetische Korrelation geschätzt.Ein hoher Anteil der genetischen Varianz für die Zahl abdominaler Borsten wurde durch epistatische Effekte und die Wirkung geschlechtsgekoppelter Gene bedingt. Bei den anderen Charakteren war der größte Anteil der genetischen Varianz additiv autosomal.Die genetische Korrelation zwischen der Zahl der Borsten sternopleural und 2. und 3. Segment coxal war durchweg hoch, zwischen abdominal und sternopleural niedrig und zwischen abdominal und sowohl 2. und 3. coxal praktisch gleich null.Ein bemerkenswerter Anteil der Covarianz zwischen der Zahl abdominaler und sternopleuraler Borsten war nicht-additiv genetisch.Die Diallel-Methode ergab zuverlässigere Schätzungen der genetischen Parameter, wenn nicht-additive oder geschlechtsgebundene genetische Variation vorlag.
  相似文献   

17.
Robertson  Alan  Briscoe  D. A.  Louw  J. H. 《Genetica》1977,47(1):73-76
Summary A locus affecting abdomen pigmentation of Drosophila melanogaster females is shown to have a large number of alleles in wild populations. Some of these also affect sternopleural bristle count.  相似文献   

18.
Replicated divergent artificial selection for abdominal and sternopleural bristle number from a highly inbred strain of Drosophila melanogaster resulted in an average divergence after 125 generations of selection of 12.0 abdominal and 8.2 sternopleural bristles from the accumulation of new mutations affecting bristle number. Responses to selection were highly asymmetrical, with greater responses for low abdominal and high sternopleural bristle numbers. Estimates of V(M), the mutational variance arising per generation, based on the infinitesimal model and averaged over the responses to the first 25 generations of selection, were 4.32 X 10(-3) V(E) for abdominal bristle number and 3.66 X 10(-3) V(E) for sternopleural bristle number, where V(E) is the environmental variance. Based on 10 generations of divergent selection within lines from generation 93, V(M) for abdominal bristle number was 6.75 X 10(-3) V(E) and for sternopleural bristle number was 5.31 X 10(-3) V(E). However, estimates of V(M) using the entire 125 generations of response to selection were lower and generally did not fit the infinitesimal model largely because the observed decelerating responses were not compatible with the predicted increasing genetic variance over time. These decelerating responses, periods of response in the opposite direction to artificial selection, and rapid responses to reverse selection all suggest new mutations affecting bristle number on average have deleterious effects on fitness. Commonly observed periods of accelerated responses followed by long periods of stasis suggest a leptokurtic distribution of mutational effects for bristles.  相似文献   

19.
hairy: A quantitative trait locus for drosophila sensory bristle number   总被引:2,自引:0,他引:2  
Robin C  Lyman RF  Long AD  Langley CH  Mackay TF 《Genetics》2002,162(1):155-164
  相似文献   

20.
Inbreeding is expected to decrease the heritability within populations. However, results from empirical studies are inconclusive. In this study, we investigated the effects of three breeding treatments (fast and slow rate of inbreeding - inbred to the same absolute level - and a control) on heritability, phenotypic, genetic and environmental variances of sternopleural bristle number in Drosophila melanogaster. Heritability, and phenotypic, genetic and environmental variances were estimated in 10 replicate lines within each of the three treatments. Standard least squares regression models and Bayesian methods were used to analyse the data. Heritability and additive genetic variance within lines were higher in the control compared with both inbreeding treatments. Heritabilities and additive genetic variances within lines were higher in slow compared with fast inbred lines, indicating that slow inbred lines retain more evolutionary potential despite the same expected absolute level of inbreeding. The between line variance was larger with inbreeding and more than twice as large in the fast than in the slow inbred lines. The different pattern of redistribution of genetic variance within and between lines in the two inbred treatments cannot be explained invoking the standard model based on selective neutrality and additive gene action. Environmental variances were higher with inbreeding, and more so with fast inbreeding, indicating that inbreeding and the rate of inbreeding affect environmental sensitivity. The phenotypic variance decreased with inbreeding, but was not affected by the rate of inbreeding. No inbreeding depression for mean sternopleural bristle number was observed in this study. Considerable variance between lines in additive genetic variance within lines was observed, illustrating between line variation in evolutionary potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号