首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterotrimeric G proteins interact with receptors and effectors at the membrane-cytoplasm interface. Structures of soluble forms have not revealed how they interact with membranes. We have used electron crystallography to determine the structure in ice of a helical array of the photoreceptor G protein, transducin, bound to the surface of a tubular lipid bilayer. The protein binds to the membrane with a very small area of contact, restricted to two points, between the surface of the protein and the surface of the lipids. Fitting the x-ray structure into the membrane-bound structure reveals one membrane contact near the lipidated Ggamma C terminus and Galpha N terminus, and another near the Galpha C terminus. The narrowness of the tethers to the lipid bilayer provides flexibility for the protein to adopt multiple orientations on the membrane, and leaves most of the G protein surface area available for protein-protein interactions.  相似文献   

2.
Rhodopsin is a prototypical G protein-coupled receptor (GPCR) - a member of the superfamily that shares a similar structural architecture consisting of seven-transmembrane helices and propagates various signals across biological membranes. Rhodopsin is embedded in the lipid bilayer of specialized disk membranes in the outer segments of retinal rod photoreceptor cells where it transmits a light-stimulated signal. Photoactivated rhodopsin then activates a visual signaling cascade through its cognate G protein, transducin or Gt, that results in a neuronal response in the brain. Interestingly, the lipid composition of ROS membranes not only differs from that of the photoreceptor plasma membrane but is critical for visual transduction. Specifically, lipids can modulate structural changes in rhodopsin that occur after photoactivation and influence binding of transducin. Thus, altering the lipid organization of ROS membranes can result in visual dysfunction and blindness.  相似文献   

3.
The G protein cascade of vision depends on two peripheral membrane proteins: the G protein, transducin (G(t)), and cGMP phosphodiesterase (PDE). Each has covalently attached lipids, and interacts with transduction components on the membrane surface. We have found that their surface interactions are critically dependent on the nature of the lipid. Membranes enhance their protein-protein interactions, especially if electrostatic attraction is introduced with positively charged lipids. These interactions are less enhanced on highly curved surfaces, but are most enhanced by unsaturated or bulky acyl chains. On positively charged membranes, G(t) assembles at a high enough density to form two-dimensional arrays with short-range crystalline order. Cationic membranes also support extremely efficient activation of PDE by the GTPgammaS (guanosine 5'-O-(thiotriphosphate)) form of Galpha(t) (Galpha(t)-GTPgammaS), minimizing functional heterogeneity of transducin and allowing activation with nanomolar Galpha(t)-GTPgammaS. Quantification of PDE activation and of the amount of Galpha(t)-GTPgammaS bound to PDE indicated that G(t) activates PDE maximally when bound in a 1:1 molar ratio. No cooperativity was observed, even at nanomolar concentrations. Thus, under these conditions, the one binding site for Galpha(t)-GTPgammaS on PDE that stimulates catalysis must be of higher affinity than one or more additional sites which are silent with respect to activation of PDE.  相似文献   

4.
Rhodopsin controls a conformational switch on the transducin gamma subunit   总被引:4,自引:0,他引:4  
Rhodopsin, a prototypical G protein-coupled receptor, catalyzes the activation of a heterotrimeric G protein, transducin, to initiate a visual signaling cascade in photoreceptor cells. The betagamma subunit complex, especially the C-terminal domain of the transducin gamma subunit, Gtgamma(60-71)farnesyl, plays a pivotal role in allosteric regulation of nucleotide exchange on the transducin alpha subunit by light-activated rhodopsin. We report that this domain is unstructured in the presence of an inactive receptor but forms an amphipathic helix upon rhodopsin activation. A K65E/E66K charge reversal mutant of the gamma subunit has diminished interactions with the receptor and fails to adopt the helical conformation. The identification of this conformational switch provides a mechanism for active GPCR utilization of the betagamma complex in signal transfer to G proteins.  相似文献   

5.
Membrane lipids have been implicated to influence the activity of G-protein-coupled receptors (GPCRs). Almost all of our knowledge on the role of lipids on GPCR and G protein function comes from work on the visual pigment rhodopsin and its G protein transducin, which reside in a highly specialized membrane environment. Thus, insight gained from rhodopsin signaling may not be simply translated to other nonvisual GPCRs. Here, we investigated the effect of lipid head group charges on the signal transduction properties of the class A GPCR neurotensin (NT) receptor 1 (NTS1) under defined experimental conditions, using self-assembled phospholipid nanodiscs prepared with the zwitter-ionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), or a POPC/POPG mixture. A combination of dynamic light scattering and sedimentation velocity showed that NTS1 was monomeric in POPC-, POPC/POPG-, and POPG-nanodiscs. Binding of the agonist NT to NTS1 occurred with similar affinities and was essentially unaffected by the phospholipid composition. In contrast, Gq protein coupling to NTS1 in various lipid nanodiscs was significantly different, and the apparent affinity of Gαq and Gβ(1)γ(1) to activated NTS1 increased with increasing POPG content. NTS1-catalyzed GDP/GTPγS nucleotide exchange at Gαq in the presence of Gβ(1)γ(1) and NT was crucially affected by the lipid type, with exchange rates higher by 1 or 2 orders of magnitude in POPC/POPG- and POPG-nanodiscs, respectively, compared to POPC-nanodiscs. Our data demonstrate that negatively charged lipids in the immediate vicinity of a nonvisual GPCR modulate the G-protein-coupling step.  相似文献   

6.
The stoichiometry of the first shell of lipids interacting with a transmembrane protein is defined operationally by the population of spin-labeled lipid chains whose motion is restricted directly by the protein. Interaction stoichiometries have been determined experimentally for a wide range of alpha-helical integral membrane proteins by using spin-label ESR spectroscopy. Here, we determine the spatially defined number of first-shell lipids at the hydrophobic perimeter of integral membrane proteins whose 3D structure has been determined by X-ray crystallography and lipid-protein interactions characterized by spin-labeling. Molecular modeling is used to build a single shell of lipids surrounding transmembrane structures derived from the PDB. Constrained energy optimization of the protein-lipid assemblies is performed by molecular mechanics. For relatively small proteins (up to 7-12 transmembrane helices), the geometrical first shell corresponds to that defined experimentally by perturbation of the lipid-chain dynamics. For larger, multi-subunit alpha-helical proteins, the lipids perturbed directly by the protein may either exceed or be less in number than those that can be accommodated at the intramembranous perimeter. In these latter cases, the motionally restricted spin-labeled lipids can be augmented by intercalation, or can correspond to a specific subpopulation at the protein interface, respectively. For monomeric beta-barrel proteins, the geometrical lipid stoichiometry corresponds to that determined from lipid mobility for a 22-stranded barrel, but fewer lipids are motionally restricted than can be accommodated around an eight-stranded barrel. Deviations from the geometrical first shell, in the beta-barrel case, are for the smaller protein with a highly curved barrel.  相似文献   

7.
The role of membrane composition in modulating the rate of G protein-receptor complex formation was examined using rhodopsin and transducin (G(t)) as a model system. Metarhodopsin II (MII) and MII-G(t) complex formation rates were measured, in the absence of GTP, via flash photolysis for rhodopsin reconstituted in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC) bilayers, with and without 30 mol% cholesterol. Variation in bilayer lipid composition altered the lifetime of MII-G(t) formation to a greater extent than the lifetime of MII. MII-G(t) formation was fastest in 18:0,22:6PC and slowest in 18:0,18:1PC/30 mol% cholesterol. At 37 degrees C and a G(t) to photolyzed rhodopsin ratio of 1:1 in 18:0,22:6PC bilayers, MII-G(t) formed with a lifetime of 0.6 +/- 0.06 ms, which was not significantly different from the lifetime for MII formation. Incorporation of 30 mol% cholesterol slowed the rate of MII-G(t) complex formation by about 400% in 18:0,18:1PC, but by less than 25% in 18:0,22:6PC bilayers. In 18:0,22:6PC, with or without cholesterol, MII-G(t) formed rapidly after MII formed. In contrast, cholesterol in 18:0,18:1PC induced a considerable lag time in MII-G(t) formation after MII formed. These results demonstrate that membrane composition is a critical factor in determining the temporal response of a G protein-coupled signaling system.  相似文献   

8.
The osmolyte trimethylamine-N-oxide (TMAO) is a naturally in vivo occurring "chemical chaperone" that has been shown to stabilise the folding of numerous proteins. Myelin basic protein (MBP) is a molecule that has not yet been suitably crystallized either in three dimensions for X-ray crystallography or in two dimensions for electron crystallography. Here, we describe lipid monolayer crystallization experiments of two species of recombinant murine MBP in the presence of TMAO. One protein was unmodified, whereas the other contained six Arg/Lys-->Gln substitutions to mimic the effects of deimination (i.e., the enzymatic modification of Arg to citrulline), which reduces the net positive charge. Planar arrays of both proteins were formed on binary lipid monolayers containing a nickel-chelating lipid and a phosphoinositide. In the presence of TMAO, the diffraction spots of these arrays became sharper and more distinct than in its absence, indicating some improvement of crystallinity. The osmolyte also induced the formation of epitaxial growth of protein arrays, especially with the mutant protein. However, none of these assemblies was sufficiently ordered to extract high-resolution structural information. Circular dichroic spectroscopy showed that MBP gained no increase in ordered secondary structure in the presence of TMAO in bulk solution, whereas it did in the presence of lipids. Dynamic light-scattering experiments confirmed that the MBP preparations were monomodal under the optimal crystallization conditions determined by electron microscopy trials. The salt and osmolyte concentrations used were shown to result in a largely unassociated population of MBP. The amino acid composition of MBP overwhelmingly favours a disordered state, and a neural-network-based scheme predicted large segments that would be unlikely to adopt a regular conformation. Thus, this protein has an inherently disordered nature, which mitigates strongly against its crystallization for high-resolution structure determination.  相似文献   

9.
Heterotrimeric G proteins are peripheral membrane proteins that propagate signals from membrane receptors to regulatory proteins localized in distinct cellular compartments. To facilitate signal amplification, G proteins are in molar excess with respect to G protein-coupled receptors. Because G proteins are capable of translocating from membrane to cytosol, protein-lipid interactions play a crucial role in signal transduction. Here, we studied the binding of heterotrimeric G proteins (Galphabetagamma) to model membranes (liposomes) and that of the entities formed upon receptor-mediated activation (Galpha and Gbetagamma). The model membranes used were composed of defined membrane lipids capable of organizing into either lamellar or nonlamellar (hexagonal H(II)) membrane structures. We demonstrated that although heterotrimeric G(i) proteins and Gbetagamma dimers can bind to lipid bilayers of phosphatidylcholine, their binding to membranes was markedly and significantly enhanced by the presence of nonlamellar phases of phosphatidylethanolamine. Conversely, activated G protein alpha subunits showed an opposite membrane binding behavior with a marked preference for lamellar membranes. These results have important consequences in cell signaling. First, the binding characteristics of the Gbetagamma dimer account for the lipid binding behavior and the cellular localization of heterotrimeric G proteins. Second, the distinct protein-lipid interactions of heterotrimeric G proteins, Gbetagamma dimers, and Galpha subunits with membrane lipids explain, in part, their different cellular mobilizations during signaling upon receptor activation. Finally, their differential interactions with lipids suggest an active role of the membrane lipid secondary structure in the propagation of signals through G protein-coupled receptors.  相似文献   

10.
A missense mutation, G38D, was found in the rod transducin alpha subunit (Galpha(t)) in individuals with the Nougaret form of dominant stationary night blindness. To elucidate the mechanism of Nougaret night blindness, we have examined the key functional properties of the mutant transducin. Our data show that the G38D mutation does not alter the interaction between Galpha(t) and Gbetagamma(t) or activation of transducin by photoexcited rhodopsin (R*). The mutant Galpha(t) has only a modestly (approximately 2.5-fold) reduced k(cat) value for GTP hydrolysis. The GTPase activity of Galpha(t)G38D can be accelerated by photoreceptor regulator of G protein signaling, RGS9. Analysis of the Galpha(t)G38D interaction with cGMP phosphodiesterase revealed marked impairment of the mutant effector function. Galpha(t)G38D completely fails to bind the inhibitory PDE gamma subunit and activate the enzyme. Altogether, our results demonstrate a novel molecular mechanism in dominant stationary night blindness. In contrast to known forms of the disease caused by constitutive activation of the visual cascade, the Nougaret form has its origin in attenuated visual signaling due to loss of effector function by transducin G38D mutant.  相似文献   

11.
The heterotrimeric G protein transducin is a key component of the vertebrate phototransduction cascade. Transducin is peripherally attached to membranes of the rod outer segment, where it interacts with other proteins at the membrane-cytosol interface. However, upon sustained activation by light, the dissociated G(t)alpha and Gbeta(1)gamma(1) subunits of transducin translocate from the outer segment to other parts of the rod cell. Here we used a computational approach to analyze the interaction strength of transducin and its subunits with acidic lipid bilayers, as well as the range of orientations that they are allowed to occupy on the membrane surface. Our results suggest that the combined constraints of electrostatics and lipid anchors substantially limit the rotational degrees of freedom of the membrane-bound transducin heterotrimer. This may contribute to a faster transducin activation rate by accelerating transducin-rhodopsin complex formation. Notably, the membrane interactions of the dissociated transducin subunits are very different from those of the heterotrimer. As shown previously, Gbeta(1)gamma(1) experiences significant attractive interactions with negatively charged membranes, whereas our new results suggest that G(t)alpha is electrostatically repelled by such membranes. We suggest that this repulsion could facilitate the membrane dissociation and intracellular translocation of G(t)alpha. Moreover, based on similarities in sequence and electrostatic properties, we propose that the properties described for transducin are common to its homologs within the G(i) subfamily. In a broader view, this work exemplifies how the activity-dependent association and dissociation of a G protein can change both the affinity for membranes and the range of allowed orientations, thereby modulating G protein function.  相似文献   

12.
The recombinant 18.5-kDa charge isoform of murine myelin basic protein (rmMBP) is unmodified posttranslationally and was used to study the effects of deimination, i.e., the conversion of arginyl to citrullinyl residues, on the protein's interactions with itself and with lipids. The unmodified species rmMBP-Cit(0) (i.e., containing no citrullinyl residues) interacted with binary monolayers containing acidic (phosphatidylinositol) and nickel-chelating lipids to form paracrystalline arrays with 4.8-nm spacing. A sample of protein was deiminated to an average of 9 citrullinyl residues per molecule of protein, yielding rmMBP-Cit(9). Under both low- and high-salt conditions, this species formed better-ordered domains than rmMBP-Cit(0), viz., planar crystalline assemblies. Thus, deimination of MBP resulted in a significant alteration of its lipid-organizing and self-interaction properties that might be operative in myelin in vivo, especially in progression of the autoimmune disease multiple sclerosis. Comparisons of amino acid sequences indicated significant similarities of MBP with filaggrin, a protein that is deiminated in another autoimmune disease, rheumatoid arthritis, suggesting that comparable epitopes could be targeted in both pathologies. In contrast, binary lipid monolayers consisting of phosphatidylinositol-4-phosphate (or phosphatidylinositol-4,5-bisphosphate) and a nickel-chelating lipid formed helical tubular vesicular structures, which appeared to be induced and/or stabilized by rmMBP, especially in its deiminated form. Sequence comparisons with other actin- and phosphoinositide-binding proteins (vinculin, ActA, MARCKS) suggested that the carboxyl-terminal segment of MBP could form an amphipathic alpha helix and was the phosphoinositide binding site.  相似文献   

13.
The GDP-GTP exchange activity of the retinal G protein, transducin, is markedly accelerated by the photoreceptor rhodopsin in the first step of visual transduction. The x-ray structures for the alpha subunits of transducin (alpha(T)) and other G proteins suggest that the nucleotide-binding (Ras-like) domain and a large helical domain form a "clam shell" that buries the GDP molecule. Thus, receptor-promoted G protein activation may involve "opening the clam shell" to facilitate GDP dissociation. In this study, we have examined whether perturbing the linker regions connecting the Ras-like and helical domains of Galpha subunits gives rise to a more readily exchangeable state. The sole glycine residues in linkers 1 and 2 were individually changed to proline residues within an alpha(T)/alpha(i1) chimera (designated alpha(T)(*)). Both alpha(T)(*) linker mutants showed significant increases in their basal rates of GDP-GTP exchange when compared either to retinal alpha(T) or recombinant alpha(T)(*). The alpha(T)(*) linker mutants were responsive to aluminum fluoride, which binds to alpha-GDP complexes and induces changes in Switch 2. Although both linker mutants were further activated by light-activated rhodopsin together with the betagamma complex, their activation was not influenced by betagamma alone, arguing against the idea that the betagamma complex helps to pry apart the helical and Ras-like domains of Galpha subunits. Once activated, the alpha(T)(*) linker mutants were able to stimulate the cyclic GMP phosphodiesterase. Overall, these findings highlight a new class of activated Galpha mutants that constitutively exchange GDP for GTP and should prove valuable in studying different G protein-signaling systems.  相似文献   

14.
Myelin basic protein (MBP) is considered to be essential for the maintenance of stability of the myelin sheath. Reduction in cationicity of MBP, especially due to conversion of positively charged arginine residues to uncharged citrulline (Cit), has been found to be associated with multiple sclerosis (MS). Here, the interactions of an anionic phosphatidylserine/monosialoganglioside-G(M1) (4:1, w:w) lipid monolayer with 18.5-kDa MBP preparations from age-matched adult humans without MS (no Cit residues), with chronic MS (6 Cit), and with acute Marburg-type MS (18 Cit) were studied by transmission and ultralow dose scanning transmission electron microscopy under cryogenic conditions. Immunogold labeling and single particle electron crystallography were used to define the nature of the complexes visualized. These electron microscopical analyses showed that the three different MBP charge isomers all formed uniformly sized and regularly shaped protein-lipid complexes with G(M1), probably as hexamers, but exhibited differential association with and organization of the lipid. The least cationic Marburg MBP-Cit(18) formed the most open protein-lipid complex. The data show a disturbance in lipid-MBP interactions at the ultrastructural level that is related to degree of citrullination, and which may be involved in myelin degeneration in multiple sclerosis.  相似文献   

15.
The visual transduction system was used as a model to investigate the effects of membrane lipid composition on receptor-G protein coupling. Rhodopsin was reconstituted into large, unilamellar phospholipid vesicles with varying acyl chain unsaturation, with and without cholesterol. The association constant (K(a)) for metarhodopsin II (MII) and transducin (G(t)) binding was determined by monitoring MII-G(t) complex formation spectrophotometrically. At 20 degrees C, in pH 7.5 isotonic buffer, the strongest MII-G(t) binding was observed in 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC), whereas the weakest binding was in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) with 30 mol% cholesterol. Increasing acyl chain unsaturation from 18:0,18:1PC to 18:0,22:6PC resulted in a 3-fold increase in K(a). The inclusion of 30 mol% cholesterol in the membrane reduced K(a) in both 18:0,22:6PC and 18:0,18:1PC. These findings demonstrate that membrane compositions can alter the signaling cascade by changing protein-protein interactions occurring predominantly in the hydrophilic region of the proteins, external to the lipid bilayer. These findings, if extended to other members of the superfamily of G protein-coupled receptors, suggest that a loss in efficiency of receptor-G protein binding is a contributing factor to the loss of cognitive skills, odor and spatial discrimination, and visual function associated with n-3 fatty acid deficiency.  相似文献   

16.
The key visual G protein, transducin undergoes bi-directional translocations between the outer segment (OS) and inner compartments of rod photoreceptors in a light-dependent manner thereby contributing to adaptation and neuroprotection of rods. A mammalian uncoordinated 119 protein (UNC119), also known as Retina Gene 4 protein (RG4), has been recently implicated in transducin transport to the OS in the dark through its interaction with the N-acylated GTP-bound transducin-α subunit (Gα(t1)). Here, we demonstrate that the interaction of human UNC119 (HRG4) with transducin is dependent on the N-acylation, but does not require the GTP-bound form of Gα(t1). The lipid specificity of UNC119 is unique: UNC119 bound the myristoylated N terminus of Gα(t1) with much higher affinity than a prenylated substrate, whereas the homologous prenyl-binding protein PrBP/δ did not interact with the myristoylated peptide. UNC119 was capable of interacting with Gα(t1)GDP as well as with heterotrimeric transducin (G(t)). This interaction of UNC119 with G(t) led to displacement of Gβ(1)γ(1) from the heterotrimer. Furthermore, UNC119 facilitated solubilization of G(t) from dark-adapted rod OS membranes. Consistent with these observations, UNC119 inhibited rhodopsin-dependent activation of G(t), but had no effect on the GTP-hydrolysis by Gα(t1). A model for the role of UNC119 in the IS→OS translocation of G(t) is proposed based on the UNC119 ability to dissociate G(t) subunits from each other and the membrane. We also found that UNC119 inhibited activation of G(o) by D2 dopamine receptor in cultured cells. Thus, UNC119 may play conserved inhibitory role in regulation of GPCR-G protein signaling in non-visual tissues.  相似文献   

17.
Rhodopsin samples, isolated using four different extraction procedures, were used to investigate the photodependent activation of the GTPase activity of transducin. A complete inhibition of transducin light-dependent GTP hydrolytic activity was observed when rhodopsin purified in the presence of 1% digitonin, following rod outer segment (ROS) solubilization with 1% 3-[(3-cholamidopropyl) dimethylammonio]-1-propane-sulfonate (CHAPS), was used for its activation [0 pmol of inorganic phosphate (Pi) released/min/pmol of rhodopsin]. Rhodopsin, isolated in the presence of 1% digitonin following ROS solubilization with 1% digitonin, was capable of stimulating slightly transducin GTPase activity, with an initial rate of 1 pmol of GTP hydrolyzed/min/pmol of rhodopsin. However, rhodopsin purified in the presence of 0.2% n-dodecyl-beta-D-maltoside (DM), following ROS solubilization with either 1% CHAPS or 1% DM, stimulated the enzymatic activity of transducin in a light-dependent manner, with an initial rate of 5 pmol of Pi released/min/pmol of rhodopsin. Addition of 0.075% egg phosphatidylcholine (PC) to the four different solubilized rhodopsin samples significantly enhanced light-stimulated GTP hydrolysis by transducin, with initial rates increasing from 0 to 1, 1 to 2, and 5 to 30 pmol of Pi released/min/pmol of rhodopsin, respectively. Furthermore, DM-solubilized rhodopsin induced the hydrolysis of the maximum amount of GTP by transducin at 0.0075% PC, while digitonin-solubilized rhodopsin only stimulated the GTPase activity of transducin to a similar value, when the amount of the photoreceptor protein was increased 4-fold and 0.15% PC was added to the assay mixture. These results suggest that the effective photoactivation of transducin by rhodopsin requires phospholipids, which seem to be differentially eliminated with the detergent extraction procedure utilized during ROS membranes solubilization and photopigment isolation.  相似文献   

18.
The effects of bacteriorhodopsin analogues and the analogues of a bacteriorhodopsin mutant (D96N) on the lateral organization of lipids have been investigated with lipid species with a variety of acyl chain lengths. The analogues, obtained by regeneration of bacterioopsin or mutant opsin with 14-, 12-, 10-, or 8-fluororetinal, were reconstituted with 1,2-didodecanoyl-sn-glycero-3-phosphocholine, 1,2-ditetradecanoyl-sn-glycero-3-phosphocholine, 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine. The phase behavior of the protein-lipid systems was investigated at different temperatures and different protein/lipid molar ratios by analyzing the fluorescence and phase properties of the 1-acyl-2-[8-(2-anthroyl)octanol]-sn-glycero-3-phosphocholine probe. The (8,10,12)-bacteriorhodopsins had a similar effect on the lipid phase transition to that induced by native bacteriorhodopsin: a rigidifying effect on the three shorter lipid species and a fluidifying effect on the longest-chain lipids used. The substitution of retinal with 14-fluororetinal resulted in much stronger effects of the protein on the lipids: a more pronounced up-shift of the lipid phase transition temperature, a rigidifying effect on all the lipids used, and an elongation of the distance over which the hydrophobic thickness of the lipid bilayer was perturbed by the protein. Evidence was provided that retinal contributed to the long-range protein-lipid interactions in bacteriorhodopsin-phosphatidylcholine vesicles. The extent of this contribution was dependent on the retinal structure in close vicinity to the Shiff base and on the compactness of the protein structure.  相似文献   

19.
This study investigated the lipid and fatty acid composition of gecko photoreceptor outer segment membranes which contain the P521 cone-type pigment. The lipids of gecko photoreceptor outer segment membranes were first extracted and separated by thin layer chromatography (TLC) and then analyzed by gas chromatography (GC). Our results show that gecko photoreceptor outer segment membranes contain less phosphatidylethanolamine (PE) and more phosphatidylcholine (PC) and phosphatidylserine (PS) compared with those of bovine and frog. The content of the polyunsaturated fatty acid, docosahexaenoic acid (DHA), in PC and PS is also the highest yet reported (55 and 63%, respectively). These lipid differences may provide some insight into the specific lipid requirements of cone-type pigments.  相似文献   

20.
CTP:phosphocholine cytidylyltransferase (CCT) is an amphitropic protein regulating phosphatidylcholine synthesis. Lipid-induced folding of its amphipathic helical (AH) membrane-binding domain activates the enzyme. In this study we examined the membrane deforming property of CCT in vitro by monitoring conversion of vesicles to tubules, using transmission electron microscopy. Vesicle tubulation was proportional to the membrane density of CCT and proceeded either as growth from a pre-formed surface bud, or as a global transformation of roughly spherical vesicles into progressively thinner tubules. The tubulation pathway depended on the lipid compositional heterogeneity of the vesicles, with heterogeneous mixtures supporting the bud-extension pathway. Co-existence of vesicles alongside thick and thin tubules suggested that CCT can discriminate between flat membrane surfaces and those with emerging curvature, binding preferentially to the latter. Thin tubules had a limiting diameter of ~12nm, likely representing bilayer cylinders with a very high density of 1 CCT/50 lipids. The AH segment was necessary and sufficient for tubulation. AH regions from diverse CCT sources, including C. elegans, had tubulation activity that correlated with α-helical length. The AH motifs in CCT and the Parkinson's-related protein, α-synuclein, have similar features, however the CCT AH was more effective in its membrane remodeling function. That CCT can deform vesicles of physiologically relevant composition suggests that CCT binding to membranes may initiate deformations required for organelle morphogenesis and at the same time stimulate synthesis of the PC required for the development of these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号