首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chorismate mutase activity in etiolated mung bean seedlings is comprised of two isozyme forms designated CM-1 and CM-2. The chorismate mutase CM-2 form representing 50% of the extractable activity was purified 420-fold with a final yield of 30%. The final preparation contained three electrophoretically distinct species, one of which exhibited chorismate mutase activity. The highly purified CM-2 form possessed an estimated molecular weight of 36,000 and displayed a pH optimum of 6.9. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.In contrast to the CM-1 form, which was inhibited by phenylalanine and tyrosine and activated by tryptophan, the CM-2 form reported here was insensitive to all three aromatic amino acids and displayed normal Michaelis-Menten substrate saturation kinetics. The apparent K0.5S of the CM-2 form was sensitive to temperature with values of 0.28, 0.20, and 0.094 mm at 20, 25, and 40 °C, respectively. Although a biphasic Arrhenius plot was observed with a break at 25 °C, further studies failed to reveal any temperature-, pH-, or substrate concentration-influenced cooperative interactions with either the aromatic amino acids or a number of secondary metabolites derived from the shikimic acid pathway. In addition, mixtures of potential metabolic effectors failed to reveal cooperative or synergistic regulatory patterns with the metabolites tested. Thus, although a primary role for the CM-1 form was proposed in regulation of the synthesis of phenylalanine and tyrosine for protein synthesis, no similar role can be proposed for the CM-2 form of the enzyme.  相似文献   

2.
Etiolated mung bean seedlings were examined for chorismate mutase activity. Evidence for the occurrence of two forms of the enzyme (designated CM-1 and CM-2) was obtained by ammonium sulfate fractionation, anion exchange cellulose chromatography, and isoelectric focusing. The two forms showed distinctly different properties, as CM-1 was inhibited by phenylalanine and tyrosine and activated by tryptophan, but inhibition by phenylalanine and tyrosine was reversed by tryptophan. The other form, CM-2, was unaffected by any of the three aromatic amino acids. Isoelectric points of the two forms were CM-1, pH 4.6, and CM-2, pH 5.6. The molecular weights estimated by molecular sieving on Sephadex G-200 were CM-1, 50,000, and CM-2, 36,000.  相似文献   

3.
Two isoenzymes of chorismate mutase (EC 5.4.99.5), designated as CM-1 and CM-2, were isolated and partially purified from suspension-cultured cells of Ruta gravelens by DEAE-sephacel chromatography and gel filtration. 60–72% of the total activity measured after DEAE-sephacel chromatography were obtained as CM-1 and 28–40% were CM-2 activity. CM-1 was inhibited by phenylalanine (K1 = 4 · 10?6 M) and tyrosine (K1 = 8. 10?6M) and activated by tryptophan. In contrast, CM-2 was not influenced by these three amino acids. The molecular weights estimated by gel filtration on SEPHADEX G-150 were 56000 for CM-1 and 45000 for CM-2, respectively. Both isoenzymes were stable at ?20°C, but exhibited different behaviour during thermal inactivation and different optima of reaction temperature. CM-1 catalysed the reaction at a pH optimum of pH 7.8 and CM-2 showed a broad optimum between 6–10. The Km-values for chorismic acid were determined to be 1.1 mM for CM-1 and 0.5 mM for CM-2. The isoenzymes showed different behaviour to inhibitors of sulfhydryl groups. There were no differences in all parameters of chorismate mutase examined for two various cell lines of Ruta graveolens.  相似文献   

4.
The regulatory properties of chorismate mutase, its cellular localization and isoenzyme pattern were investigated in 23 yeast species. All yeasts contained only a single form of the enzyme, which is localized exclusively in the cytosol. The enzyme activity from all sources was activated 3-(Rhodotorula aurantiaca) to 185-fold (Candida maltosa) by tryptophan. The tryphtophan concentration, which was necessary to obtain half maximum velocity was determined to be between 2 (Pichia guilliermondii) and 95 M (Yarrowia lipolytica). Ten yeast species possessed an enzyme that was inhibited by both phenylalanine and tyrosine. The chorismate mutase from four strains was inhibited only by tyrosine and the enzyme from two species was inhibited by phenylalanine alone. The enzyme inhibition by phenylalanine and tyrosine was completely reversed by tryptophan. Six enzyme sources were not inhibited and theY. lipolytica chorismate mutase was slightly activated by both amino acids.  相似文献   

5.
Summary In extension of previous studies on the regulation of the aromatic amino acid pathway in blue-green and green algae the control of two branch-point enzymes, namely chorismate mutase and anthranilate synthetase has been studied. The activity of chorismate mutase in these organisms is effectively inhibited by l-tyrosine or l-phenylalanine. l-tryptophan, in contrast, proved to be a positive effector of the enzyme: in the absence of phenylalanine or tyrosine tryptophan slightly stimulated chorismate mutase activity; this stimulation was even brought about in the presence of excess phenylalanine or tyrosine, irrespective if the enzyme had been preincubated with these inhibitors or not. Tryptophan thus proved to completely revert the feedback inhibition of this enzyme by phenylalanine or tyrosine. Substrate saturation curves of chorismate mutase activity are hyperbolic in the presence of tryptophan and sigmoid in the presence of phenylalanine or tyrosine. In contrast to the enzymes of the green algae investigated, chorismate mutase activity of Anacystis nidulans, a member of the class of the blue-green algae was not affected by any of the aromatic amino acids.The activity of anthranilate synthetase, the second enzyme of the chorismic acid branch-point of the pathway was consistently inhibited by l-tryptophan in all the organisms tested. The results described here bear significance on the regulation of a multi-branched pathway the first enzyme of which is inhibited just by one endproduct.  相似文献   

6.
Chromatography on DEAE cellulose equilibrated with Pipes buffer resolved three forms of chorismate mutase (CM) from tubers and leaves of Solanum tuberosum: CM-1A and CM-1B were activated by tryptophan and inhibited by phenylalanine and tyrosine; CM-2 was unaffected by these aromatic amino acids. When compared to freshly excised discs, 3 day old tuber discs demonstrated a 4.5-fold increase in CM-1 activity following wounding. By contrast, CM-2 activity levels were not affected by this treatment. In aged tuber discs the CM-1:CM-2 activity ratio was 9:1. However, in green leaves the CM-1:CM-2 activity ratio was 1:4 suggesting organ specific regulation for the expression of these isozymes. The CM-1 isozymes isolated from both tubers and leaves shared similar native molecular weight values of 55,000, Km values of 40 to 56 micromolar, and inhibition by phenylalanine (110-145 micromolar concentrations required for 50% inhibition) and tyrosine (50-70 micromolar concentrations required for 50% inhibition). The resolution of CM-1 into two forms occurred only in the presence of Pipes buffer. When this buffer was replaced with Aces, Bes, imidazole or Tris, only a single peak of CM-1 activity was observed. In these buffers CM-2 eluted as a shoulder on the CM-1 peak. Analytical isoelectric focusing of the CM-1 fraction followed by assay of the gel yielded only one form of CM-1 with an isoelectric point of 5.0. Gel filtration studies with Pipes buffer yielded molecular weights of 60,000 for both CM-1A and CM-1B indicating these forms are not the result of aggregation. The two forms of CM-1 may be artifacts generated by Pipes buffer.  相似文献   

7.
Mobley EM  Kunkel BN  Keith B 《Gene》1999,240(1):115-123
Phenylalanine, tyrosine, and tryptophan have a dual biosynthetic role in plants; they are required for protein synthesis and are also precursors to a number of aromatic secondary metabolites critical to normal development and stress responses. Whereas much has been learned in recent years about the genetic control of tryptophan biosynthesis in Arabidopsis and other plants, relatively little is known about the genetic regulation of phenylalanine and tyrosine synthesis. We have isolated, characterized and determined the expression of Arabidopsis thaliana genes encoding chorismate mutase, the enzyme catalyzing the first committed step in phenylalanine and tyrosine synthesis. Three independent Arabidopsis chorismate mutase cDNAs were isolated by functional complementation of a Saccharomyces cerevisiae mutation. Two of these cDNAs have been reported independently (Eberhard et al., 1993. FEBS 334, 233-236; Eberhard et al., 1996. Plant J. 10, 815-821), but the third (designated CM-3) represents a novel gene. The different organ-specific expression patterns of these cDNAs, their regulation in response to pathogen infiltration, as well as the different enzymatic characteristics of the proteins they encode are also described. Together, these data suggest that each isoform may play a distinct physiological role in coordinating chorismate mutase activity with developmental and environmental signals.  相似文献   

8.
Three classes of mutant strains of Escherichia coli K12 defective in pheA, the gene coding for chorismate mutase/prephenate dehydratase, have been isolated: (1) those lacking prephenate dehydratase activity, (2) those lacking chorismate mutase activity, and (3) those lacking both activities. Chorismate mutase/prephenate dehydratase from the second class of mutants was less sensitive to inhibition by phenylalanine than wild-type enzyme and, along with the defective enzyme from the third class of mutants, could not be purified by affinity chromatography on Sepharosyl-phenylalanine. Pure chorismate mutase/prephenate dehydratase protein was prepared from two strains belonging to the first class. The chorismate mutase activity of these enzymes is kinetically similar to that of the wild-type enzyme except for a two- to threefold increase in both the Ka for chorismate and the Kis for inhibition by prephenate. In both cases only one change in the tryptic fingerprint was detected, resulting from a substitution of the threonine residue in the peptide Gln·Asn·Phe·Thr·Arg. This suggests that this residue is catalytically or structurally essential for the dehydratase activity.  相似文献   

9.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

10.
We have isolated the tryptophan auxotrophic mutant strain, PK101, of Pichia guilliermondii. This strain is not defective in any of the tryptophan biosynthetic enzymes, but its chrismate mutase, an enzyme of the phenylalanine-tyrosine biosynthesis, is changed. In comparison with the wild type chorismate mutase, the enzyme of PK101 is characterized by a complete loss of sensitivity to l-phenylalanine inhibition and to a considerable loss of sensitivity to l-tryptophan activation. Furthermore, the chorismate mutase activity of the mutant is more than 7-fold higher in the absence of l-tryptophan than in the wild type. The PK101 enzyme is also changed in the pH optimum and in some kinetic constants. We found an increased intracellular pool of both phenylalanine and tyrosine and a reduced contents of tryptophan in the mutant cells. Our genetic data indicate that the mutant phenotype is dominant over the wild type.  相似文献   

11.
We have isolated a chorismate mutase bradytroph (leaky auxotroph) ofAnabaena sp. PCC 7119 (ATCC 29151) as a spontaneous 6-fluorotryptophan-resistant mutant. The decreased chorismate mutase activity resulted in the production of quantities of the phenylalanine and tyrosine that limited rate of growth. 3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase activity in the mutant was elevated more than twofold over the wild-type activity, suggesting derepression of this enzyme. The physiological deregulation of DAHP synthase and the genetic-based deficiency of chorismate mutase promoted an elevated level of intracellular chorismate, which then overwhelmed the competitive inhibition of anthranilate synthase by tryptophan, resulting in the overproduction of tryptophan and indoleglycerolphosphate. The presence of exogenous serine increased the production of tryptophan at the expense of indoleglycerolphosphate. This indicated that the endogenous potential for increasing the amount of serine available for increased tryptophan production is limited.  相似文献   

12.
Comparison of chorismate mutase isozyme patterns in selected plants   总被引:2,自引:2,他引:0       下载免费PDF全文
A wide variety of plants have been assayed to determine if they contain three isozymes of chorismate mutase (EC 5.4.99.5) as does alfalfa (Medicago sativa L.) or two isozymes, as does mung bean (Phaseolus aureus). The isozymes were separated by disc electrophoresis. All anthophyta with the exception of some closely related Leguminosae contained three isozymes of chorismate mutase. The one coniferophyta (a pine), and pterophyta (a fern) and one microphyllophyta (a Selaginella) assayed contained two isozymes of chorismate mutase. All plants assayed contained measurable chorismate mutase levels and at least two isozymes of chorismate mutase.  相似文献   

13.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):117-124
The reaction catalyzed by chorismate mutase (EC 5.4.99.5) is a crucial step for biosynthesis of two aromatic amino acids as well as for the synthesis of phenylpropanoid compounds. The regulatory properties of two chorismate-mutase isoenzymes expressed in Nicotiana silvestris Speg. et Comes are consistent with their differential roles in pathway flow routes ending with l-phenylalanine and l-tyrosine on one hand (isoenzyme CM-1), and ending with secondary metabolites on the other hand (isoenzyme CM-2). Isoenzyme CM-1 was very sensitive to allosteric control by all three aromatic amino acids. At pH 6.1, l-tryptophan was a potent allosteric activator (K a =1.5 M), while feedback inhibition was effected by l-tyrosine (K i =15 M) or by l-phenylalanine (Ki=15 M). At pH 6.1, all three effectors acted competitively, influencing the apparent K m for chorismate. All three allosteric effectors protected isoenzyme CM-1 at pH 6.1 from thermal inactivation at 52° C. l-Tryptophan abolished the weak positive cooperativity of substrate binding found with isoenzyme CM-1 only at low pH. At pH 7.2, the allosteric effects of l-tyrosine and l-tryptophan were only modestly different, in striking contrast to results obtained with l-phenylalanine. At pH 7.2 (i) the K i for l-phenylalanine was elevated over 30-fold to 500 M, (ii) the kinetics of inhibition became non-competitive, and (iii) l-phenylalanine now failed to protect isoenzyme CM-1 against thermal inactivation. l-Phenylalanine may act at different binding sites depending upon the intracellular pH milieu. In-vitro data indicated that the relative ability of allosteric activation to dominate over allosteric inhibition increases markedly with both pH and temperature. The second isoenzyme, CM-2, was inhibited competitively by caffeic acid (K i =0.2 mM). Aromatic amino acids failed to affect CM-2 activity over a broad range of pH and temperature. Inhibition curves obtained in the presence of caffeic acid were sigmoid, yielding an interaction coefficient (from Hill plots) of n=1.8.Abbreviation DAHP synthase 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase  相似文献   

14.
Shikimate, anthranilate, indole, l -tryptophan, phenylpyruvate, l -p henylalanine, p-hydroxyphenylpyruvate or l -tyrosine were added to suspension-cultured Nicotiana tabacum (tabacco) and Daucus carota (carrot) tissues and incubated for 24 hours. Uptake of each compound was substantial as measured by its decrease in the medium. The levels of free tryptophan, phenylalanine and tyrosine were determined in the tissues after the 24 hours incubation. Shikimate did not change the aromatic animo acid levels in carrot tissue, but did increase all three in tobacco (3-fold or more), indicating a less stringent feedback control in tobacco. Anthranilate and indole increased the tissue tryptophan levels in both species by at least 17-fold, showing that the flow from anthranilate and indole to tryptophan was apparently unhindered by enzymatic control mechanisms. When tryptophan levels were elevated in both carrot and tobaccotissues by anthranilate, indole or tryptophan addition, there was also an increase in free phyenylalanine and tyrosine. This might be due to the reversal of phenylalanine and tyrosine feedback inhibition of chorismate mutase by the high tryptophan in the tissue. Chorismate mutase activity in tobacco crude extracts could be inhibited by 66–90% by 1 mM phenylalanine and /or tyrosine. Tryptophan at 1 mM stimulated the enzyme activity by 1/3 and completely reversed the phenylalanine and/or tyrosine inhibition of enzyme activity. Chorsimate mutase activity amino acids under a variety of conditions. Phenylpyruvate increased the phenylalanine levels and p-hydroxyphenylpyruvate increased the tyrosine levels in carrot and tobacco tissues indicating that there was no feedback control of the last step in phenylalanine and tyrosine biosynthesis.  相似文献   

15.
The isoenzyme pattern of chorismate mutase (EC 5.4.99.5) was examined by diethylaminoethyl-cellulose chromatography in a wide variety of plants. All plants contained a regulated form of chorismate mutase (CM-1), and most contained an additional, unregulated form (CM-2). The regulatory properties of CM-1 differed significantly between plants. Antisera prepared against CM-1 and CM-2 from Sorghum bicolor were used to test immunological cross reaction of chorismate mutases from other plants. There was a high degree of similarity between chorismate mutase isoenzymes from Sorghum bicolor and Zea mays and some with Hordeum vulgare, but all other species studied were antigenically distinct from sorghum. No homology between the structure of CM-1 and CM-2 was detected within any species.  相似文献   

16.
Two forms of chorismate mutase (EC 5.4.99.5), designated as CM-1 and CM-2, have been detected in etiolated seedlings of Sorghum bicolor after DEAE-cellulose chromatography. CM-1 and CM-2 contained 44 and 56%, respectively, of the total activity measured after DEAE-cellulose chromatography. CM-1 was activated by tryptophan and inhibited by phenylalanine and tyrosine. In contrast, CM-2 was insensitive to all three aromatic amino acids. CM-1 and CM-2 were purified 1389- and 1018-fold, respectively, by anion exchange, hydrophobic, and dye matrix chromatography. The molecular weights estimated by gel filtration on Sephacryl S-200 were 56,000 for CM-1 and 48,000 for CM-2. Subunit molecular weights of the two forms were estimated by sodium dodecyl sulfate-gel electrophoresis at 36,000 and 51,000 for CM-1 and CM-2, respectively. Tryptophan was required for the stability of CM-1 at all stages of purification. Both isoenzymes were stable at 0 or -20 degrees C and had broad pH optima (6-10 for CM-1 and 7.5-9.5 for CM-2).  相似文献   

17.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):109-116
Two isoenzymes of chorismate mutase (EC 5.4.99.5) were isolated and partially purified from leaves of diploid (2n=24) Nicotiana silvestris Speg. et Comes and from isogenic cells in a suspension culture originally established from haploid tissue. An isoenzyme denoted CM-1 (M r=52,000) accounted for the major fraction of total activity recovered from suspension-cultured cells, while isoenzyme CM-2 (M r=65,000) represented the major fraction of activity recovered from green leaf tissue. The ratio of isoenzyme levels from these two sources differed more than 20-fold. The subcellular location of isoenzyme CM-1 is known to be in the chloroplasts of green leaves or in proplastids of cultured cells, while isoenzyme CM-2 is located in the cytosol. Both isoenzymes were stable during partial purification, possessed broad pH optima for catalysis between 6.0 and 8.0, and were active without denaturation at temperatures at least as high as 45° C. Thiol reagents were unnecessary for either stability or activity of both isoenzymes. The affinity of isoenzyme CM-2 for substrate (K m=0.24 mM) was almost an order of magnitude better than that of CM-1. The kinetic behavior of isoenzyme CM-1 was influenced by pH, while that of isoenzyme CM-2 was not. At pH 7.2, hyperbolic substrate-saturation curves (K m=1.7 mM) were obtained for isoenzyme CM-1. At pH 6.1, however, isoenzyme CM-1 displayed relatively weak positive cooperativity, Hill plots yielding an n value of 1.2 At pH 6.1 the half-saturation ([S]0.5) value was 2.5 mM.Abbreviations DEAE diethylaminoethyl - M r molecular weight  相似文献   

18.
Chorismate mutase, a branch-point enzyme in the aromatic amino acid pathway of Saccharomyces cerevisiae, and also a mutant chorismate mutase with a single amino acid substitution in the C-terminal part of the protein have been purified approximately 20-fold and 64-fold from overproducing strains, respectively. The wild-type enzyme is activated by tryptophan and subject to feedback inhibition by tyrosine, whereas the mutant enzyme does not respond to activation by tryptophan nor inhibition by tyrosine. Both enzymes are dimers consisting of two identical subunits of Mr 30,000, each one capable of binding one substrate and one activator molecule. Each subunit of the wild-type enzyme also binds one inhibitor molecule, whereas the mutant enzyme lost this ability. The enzyme reaction was observed by 1H NMR and shows a direct and irreversible conversion of chorismate to prephenate without the accumulation of any enzyme-free intermediates. The kinetic data of the wild-type chorismate mutase show positive cooperativity toward the substrate with a Hill coefficient of 1.71 and a [S]0.5 value of 4.0 mM. In the presence of the activator tryptophan, the cooperativity is lost. The enzyme has an [S]0.5 value of 1.2 mM in the presence of 10 microM tryptophan and an increased [S]0.5 value of 8.6 mM in the presence of 300 microM tyrosine. In the mutant enzyme, a loss of cooperativity was observed, and [S]0.5 was reduced to 1.0 mM. This enzyme is therefore locked in the activated state by a single amino acid substitution.  相似文献   

19.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

20.
An amino acid-sensitive form of chorismate mutase (CM) has been purified over 1000-fold from disks excised from tubers of Solanum tuberosum L. cv White Rose. Purification was accomplished by chromatography on Matrix Blue A followed by affinity chromatography with tryptophan as ligand. CM assays performed in the absence of tryptophan yielded pH-dependent sigmoidal kinetics. At pH 8.0, sigmoidal kinetics were observed with a Hill coefficient of 1.66 (S0.5 = 188 microM). However, a shift from sigmoidal to hyperbolic kinetics was observed when assays were performed at pH 8.5. Addition of 9 microM tryptophan to the assay resulted in maximum activation of the enzyme with a Ka of 1.2 microM. When assayed in the presence of tryptophan, hyperbolic kinetics were observed over the pH range 6.0-8.0. Addition of tryptophan also decreased the Km for chorismate from 185 to 45 microM. Tryptophan (0.1 mM) completely protected CM from inhibition by phenylalanine (1.8 mM) and tyrosine (1.8 mM). However, in the absence of the activator, phenylalanine and tyrosine exhibited 50% inhibition at 0.80 and 0.68 mM concentrations, respectively. Both phenylalanine and tyrosine competitively inhibited CM activity with Ki values of 550 and 440 mM, respectively. Arogenate (1.0 mM) had no effect on CM activity in either the presence or absence of tryptophan. Analytical isoelectric focusing yielded an isoelectric point of 4.73.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号