首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effect of Vesicular Arbuscular Mycorrhizae (VAM) and Rhizobium on the cold season legumes, lentil and faba bean, as well as on summer legume, soybean, were studied in soils with low indeginous VA mycorrhizal spores. Inoculation of the plant with VA mycorrhizal fungi increased the level of mycorrhizal root infection of lentil, faba bean and soybean. The inoculation with Rhizobium had no significant effect on VA mycorrhizal infection percent, but VA mycorrhizal inoculation increased nodulation of the three legumes. The inoculation with Rhizobium alone significantly increased plant dry weight and N content of lentil and faba bean as well as seed yield of soybean. VA mycorrhizal inoculation also significantly increased plant dry weight and phosphorus content of the plants as did fertilization with superphosphate. Rock phosphate fertilization, however, had no significant effect on plant growth or phosphorus uptake. The addition of rock phosphate in combination with VA mycorrhizal inoculation significantly increased plant dry weight and P uptake of the plants. The dual inoculation with both rhizobia and mycorrhizae induced more significant increases in plant dry weight, N and P content of lentil and faba bean as well as seed yield of soybean than inoculation with either VA mycorrhizae or Rhizobium alone.  相似文献   

2.
The relative effectiveness of nitrate, allantoin, or nitrate plus allantoin as sources of nitrogen for the indeterminate soybean plant [ Glycine max (L.) Merr cv. Harper] was studied throughout vegetative and reproductive growth. All plants were provided with 3.0 m M nitrogen and were grown hydroponically in growth chambers. During vegetative and early reproductive growth, plants given nitrate or nitrate plus allantoin grew faster than plants provided allantoin only. However, during pod fill, plants provided with allantoin or allantoin plus nitrate gained weight more rapidly than plants receiving just nitrate. More importantly, at maturity plants that had been provided with allantoin or allantoin plus nitrate during pod fill were 30% heavier in total dry weight, 50% higher in nitrogen content, and 50% higher in seed yield than plants that had received just nitrate. At full bloom, all plants were inoculated with the same culture of Bradyrhizobium japonicum , and twice each week throughout pod fill each plant was assayed for nitrogen fixation (acetylene reduction). Correlation coefficients obtained by linear regression analysis show a strong positive correlation between the measured rate of nitrogen fixation and maximum plant fresh weight (r = 0.83), total plant nitrogen (r = 0.81), or seed yield (r = 0.76). The fact that nitrogen fixation during pod fill stimulates plant growth and seed yield, coupled with the facts that nitrate blocks nodulation and is not used efficiently during pod fill by the soybean plant, may explain why seed yield of field-grown soybeans usually does not respond to added fertilizer nitrogen. Thus, it is suggested that enhanced nitrogen fixation may be the key factor in improving soybean seed yield.  相似文献   

3.
以533份不同结荚习性大豆种质为试验材料,研究了不同结荚习性大豆种质在黄淮夏播生态区的农艺性状表现,并对主要农艺性状和产量的相关性进行了分析。结果表明:大豆种质的营养期、株高、有效分枝、单株荚数、倒伏性、株型等性状的平均值随无限-亚有限-有限结荚习性递减,生殖期、单株粒重、百粒重、小区产量等性状平均值的变化趋势则相反。相关分析表明,无限结荚习性种质的产量与株高、单株粒重呈极显著正相关,偏相关系数分别为0.602**、0.566**,与有效分枝、倒伏性呈显著负相关,偏相关系数分别为-0.384*、-0.451*。亚有限结荚习性种质的产量与生殖期、单株粒重呈显著、极显著正相关,偏相关系数分别为0.156*、0.536*,与有效分枝呈极显著负相关,偏相关系数为-0.323**。有限结荚习性种质的产量与单株粒重、株高呈极显著正相关,偏相关系数分别为0.433**、0.262**,与株型、单株荚数呈显著、极显著负相关,偏相关系数分别为-0.149*、-0.198**。结合不同结荚习性品种的生长特点,本研究认为,无限结荚习性品种株高较高且株高与产量呈极显著正相关,适合干旱地区种植;亚有限结荚习性品种生殖期与产量呈正相关,生殖期内生长旺盛需要较多的养分供应;有限结荚习性品种的营养生长持续时间短,株高较矮,吸收光能有限,实现高产主要依赖各性状器官间的平衡。生产中,有限结荚习性品种的营养生长期间既需要充足的肥水促其生长,又要防止旺长。  相似文献   

4.
Summary Yield stability of determinate and indeterminate dry bean (Phaseolus vulgaris L.) cultivars was compared using regression of genotypic performance on environmental means. Yields of 28 dry bean cultivars differing in plant growth habit and commercial class designation were obtained from 42 Michigan performance nurseries over the 6 year period 1980 to 1985. The determinate type I large-seeded kidney and cranberry bean cultivars had below-average seed yield and large mean square deviations from regression. Lower yielding determinate small-seeded navy cultivars had low deviation mean square values, while higher yielding determinate navy cultivars had correspondingly higher mean square deviations from regression. Although seed yield of cultivars with an indeterminate growth habit was greater than determinate cultivars, prostrate type III indeterminate cultivars had deviation mean square values equivalent to those of large-seeded determinate cultivars. The erect, short vine type II indeterminate cultivars (architypes) had greater than average seed yields and minimum deviations from regression. Compared with other plant types, the architype group showed a greater yield response to more productive environments, with regression coefficient values significantly greater than unity. These results indicate that the type II growth habit offers the breeder the best opportunity of obtaining greater seed yield without incurring loss of yield stability as occurs with the type I and type III growth habits. Since the dry bean cultivars utilized in this study represent two distinct centers of domestication, the regression analysis suggests that cultivars from the predominant genetic center demonstrate more yield stability. A non-significant rank correlation coefficient between the combined and separate analyses for deviation mean square values of large-seeded cultivars implies that commercial dry bean classes should be compared separately based on center of domestication.Contributions from Michigan Bean Commission, Michigan Bean Shippers Assoc. and Michigan Agric. Exp. Sta., Michigan Agric. Exp. Sta. Journal Article No. 11986  相似文献   

5.
The effects of elevated [CO2] on 25 variables describing soybean physiology, growth and yield are reviewed using meta‐analytic techniques. This is the first meta‐analysis to our knowledge performed on a single crop species and summarizes the effects of 111 studies. These primary studies include numerous soybean growth forms, various stress and experimental treatments, and a range of elevated [CO2] levels (from 450 to 1250 p.p.m.), with a mean of 689 p.p.m. across all studies. Stimulation of soybean leaf CO2 assimilation rate with growth at elevated [CO2] was 39%, despite a 40% decrease in stomatal conductance and a 11% decrease in Rubisco activity. Increased leaf CO2 uptake combined with an 18% stimulation in leaf area to provide a 59% increase in canopy photosynthetic rate. The increase in total dry weight was lower at 37%, and seed yield still lower at 24%. This shows that even in an agronomic species selected for maximum investment in seed, several plant level feedbacks prevent additional investment in reproduction, such that yield fails to reflect fully the increase in whole plant carbon uptake. Large soil containers (> 9 L) have been considered adequate for assessing plant responses to elevated [CO2]. However, in open‐top chamber experiments, soybeans grown in large pots showed a significant threefold smaller stimulation in yield than soybeans grown in the ground. This suggests that conclusions about plant yield based on pot studies, even when using very large containers, are a poor reflection of performance in the absence of any physical restriction on root growth. This review supports a number of current paradigms of plant responses to elevated [CO2]. Namely, stimulation of photosynthesis is greater in plants that fix N and have additional carbohydrate sinks in nodules. This supports the notion that photosynthetic capacity decreases when plants are N‐limited, but not when plants have adequate N and sink strength. The root : shoot ratio did not change with growth at elevated [CO2], sustaining the charge that biomass allocation is unaffected by growth at elevated [CO2] when plant size and ontogeny are considered.  相似文献   

6.
This study demonstrates that the pre-emergence herbicide napropamide will enhance plant growth when applied at very low concentrations. Stimulation of shoot elongation, fresh weight, and dry weight was observed when seeds of wheat, corn, raddish, and soybean were soaked in very dilute solutions of napropamide for 6 hr. Biomass synthesis by Red Kidney bean was dramatically increased by 10 m napropamide, a 24.3% increase in fresh weight and a 76% increase in dry weight being observed. It is apparent that napropamide should be listed with those herbicides that have exhibited growth regulator properties.  相似文献   

7.
Field experiments were conducted with sesame (Sesamum indicum L. cv. Rama) for two years (1997 and 1998) to study the effect of three level of irrigation (F+C, B+C, B+F+C) and two growth regulators (CCC, 200 ppm CCC; 100 ppm and BX-112, 100 ppm; BX-112, 50 ppm) on growth (root and shoot length, average number of primary branches/plant), morpho-physiological growth parameters(LAI, LAD, CGR and NAR), yield attributing parameters(average number of capsule/plant, average number of seeds/capsule) and seed yield. Irrigation at B+F+C stage showed significant effect on these parameters. Among the growth regulators, CCC, 200 ppm showed remarkable results on these parameters and seed yield. Seed yield in CCC, 200 ppm treatment was more than 53% in comparison to water soaked seeds. The interaction between irrigation and PGR showed better seed yield and it was concluded that the growth regulator CCC might be utilized for enhancement of seed yield of summer sesame under field condition.  相似文献   

8.
Soybean [Glycine max (L.) Merr. cv. Hardee] and wheat (Triticum aestivum L. cv. Jori) were grown from seed under four ultraviolet-B irradiances and four levels of photosynthetically active radiation in a factorial design. The effects of ultraviolet-B radiation on leaf number and area, total dry matter production, dry weight of component organs, and plant height were compared between soybean and wheat. Ultraviolet-B radiation effects were dependent upon the level of photosynthetically active radiation incident during growth. Wheat and soybeans were both affected by low ultraviolet-B radiation flux densities; however, they differed markedly in their growth responses and biomass allocation patterns. Substantial interactions between ultraviolet-B and photosynthetically active radiation indicate a need for the measurement of longer wavelength radiation when evaluating the effects of ultraviolet-B radiation on plant growth in natural conditions.  相似文献   

9.
Our previous work demonstrated that boron (B) supplied to soybeans (Glycine max [L.] Merrill cv `Williams 82') by a stem infusion technique increased the number of pods on branches and led to a significant yield increase. Therefore, research was continued to determine whether soil or foliar applications of B could be used to achieve the same results. Field experiments were completed with both soil and foliar applications of B. Only the foliar applications of B resulted in a significant increase in the number of pods/branch. When split foliar treatments were applied twice during flowering, the total application of 0.56 kilograms of B per hectare was the optimal treatment for increasing pods/branch. In a second field experiment in 1987, soybeans were treated weekly from flowering through podfill with six split foliar applications of aqueous H3BO3 solutions so that total applications were either 0, 1.1, or 2.24 kilograms of B per hectare. Foliar applications increased the number of branches/plant at the end of the season and significantly stimulated the formation of pods on branches, with 1.12 kilograms of B per hectare being the optimal treatment for these variables. This rate also tended to increase the number of seeds/plant and seed yield/plant. A duplicate experiment with minor modifications was conducted during the summer of 1988, and again the 1.12 kilograms of B per hectare application rate resulted in significant increases in number of branches at harvest as well as number of pods on branches. The 2.24 kilograms of B per hectare application rate also significantly increased these parameters. Foliar B applications induced increases in leaf B concentration far above the 60 micrograms per gram level that was previously accepted as the upper level of tolerance for soybeans. Since optimal branching and per plant yield parameters were achieved by plants with B leaf concentrations greater than 160 micrograms per gram, the accepted range of soybean tolerance for B must be reconsidered when B is foliarly applied.  相似文献   

10.
J.T. Moraghan 《Plant and Soil》2004,264(1-2):287-297
The influence of times of applying FeEDDHA on seed yield and Fe accumulation by four common bean (Phaseolus vulgaris L.) and two soybean (Glycine max L.) genotypes grown on a calcareous soil was studied under greenhouse conditions. The soybean genotypes, unlike the common bean genotypes, developed Fe-deficiency chlorosis and responded to application of the chelate. A preplant application of FeEDDHA was more efficacious than a flowering application in increasing seed yield of soybean. In contrast, the flowering application was much more effective than the preplant application for increasing seed Fe concentration [Fe] of both species. Percentage of seed Fe located in the seed coat of the common bean genotypes ranged from approximately 5 to 40% and was little affected by FeEDDHA. This within-seed distribution of Fe was correlated with methanol-extractable seed-coat pigments absorbing at 500 nm, presumably anthocyanins, but not with condensed tannins (proanthocyanidins). The soybean genotypes did not accumulate anthocyanins or tannins in the seed coat. Seed of Fe-deficient soybean plants without FeEDDHA had appreciably lower [Fe] and had a lower percentage of seed Fe in the seed coat than treated plants. Within-seed distribution of Fe should be considered in plant breeding because of concerns about both human nutrition and early seedling growth. Abbreviations: DTPA – diethylenetrinitrilopentaacetic acid; EDDHA – ethylenediamine di(o-hydroxyphenylacetic acid) acid; SPAD – single photon avalanche diode  相似文献   

11.
Plant growth and seed yield of mung bean were studied in sand culture at different levels of NaCl [0, 50, 100, 150, 200, 250 mM] in the root medium. Results showed that both dry matter yield and seed yield of plants grown for 14 weeks at 50 mM NaCl and 100 mM NaCl were around 60 % and 25 %, respectively of those for plants grown in control solution. Higher concentrations caused wilting and necrosis of leaves. Very effective exclusion of Na and Cl from salt grown mung bean seed was observed with concommitant high accumulation of Na and Cl in the stem. It is speculated that mung bean plant stem may act as a ‘sink’ for NaCl during the reproductive stage of the plant growth cycle.  相似文献   

12.
Exogenous application of cytokinin to raceme tissues of soybean(Glycine max(L.) Merr.) has been shown to stimulate flower productionand to prevent flower abortion. The effects of these hormoneapplications have been ascertained for treated tissues, butthe effects of cytokinins on total seed yields in treated plantshave not been evaluated. Our objectives were to examine theeffects of systemic cytokinin applications on soybean yieldsusing an experimental line of soybeans, SD-87001, that has beenshown to be highly sensitive to exogenous cytokinin application.Soybeans were grown hydroponically or in pots in the greenhouse,and 6-benzylaminopurine (BA) was introduced into the xylem streamthrough a cotton wick for 2 weeks during anthesis. After theplants had matured, the number of pods, seeds per pod, and thetotal seed weight per plant were measured. In the greenhouse,application of 3.4 x 10-7 moles of BA resulted in a 79% increasein seed yield compared with controls. Results of field trialsshowed much greater variability within treatments, with consistent,but non-significant increases in seed number and total yieldsof about 3%. Data suggest that cytokinin levels play a significantrole in determining total yield in soybeans, and that increasingcytokinin concentrations in certain environments may resultin increased total seed production. Copyright 2001 Annals ofBotany Company Glycine max, soybean, flower abortion, cytokinin, 6-benzylaminopurine, hydroponic, seed yield, wicking  相似文献   

13.
The Intergovernmental Panel on Climate Change projects that atmospheric [CO2] will reach 550 ppm by 2050. Numerous assessments of plant response to elevated [CO2] have been conducted in chambers and enclosures, with only a few studies reporting responses in fully open‐air, field conditions. Reported yields for the world's two major grain crops, wheat and rice, are substantially lower in free‐air CO2 enrichment (FACE) than predicted from similar elevated [CO2] experiments within chambers. This discrepancy has major implications for forecasting future global food supply. Globally, the leguminous‐crop soybean (Glycine max (L.) Merr.) is planted on more land than any other dicotyledonous crop. Previous studies have shown that total dry mass production increased on average 37% in response to increasing [CO2] to approximately 700 ppm, but harvestable yield will increase only 24%. Is this representative of soybean responses under open‐air field conditions? The effects of elevation of [CO2] to 550 ppm on total production, partitioning and yield of soybean over 3 years are reported. This is the first FACE study of soybean ( http://www.soyface.uiuc.edu ) and the first on crops in the Midwest of North America, one of the major food production regions of the globe. Although increases in both aboveground net primary production (17–18%) and yield (15%) were consistent across three growing seasons and two cultivars, the relative stimulation was less than projected from previous chamber experiments. As in previous studies, partitioning to seed dry mass decreased; however, net production during vegetative growth did not increase and crop maturation was delayed, not accelerated as previously reported. These results suggest that chamber studies may have over‐estimated the stimulatory effect of rising [CO2], with important implications on global food supply forecasts.  相似文献   

14.
Nitrogen (N) has been suggested as a determinant of seed production especially in species with high seed N content. Assuming that seed yield was determined as the balance between N demand and supply for seed production, we studied the effect of N fertilization after flowering on soybean (Glycine max L. Merr.) yield. Seed N concentration was nearly constant irrespective of N fertilization, indicating that seed production was proportional to the amount of N available for seed growth. N demand for seed production was analyzed as the product of seed number, the rate of N filling in individual seeds, and the length of the reproductive period. N fertilization increased seed number and the reproductive period, but did not influence the N filling rate. Seed number was positively correlated with dry mass productivity after flowering. Three N sources were distinguished: mineral N uptake, symbiotic N2 fixation and N remobilization from vegetative body. N fertilization increased N uptake and N remobilization, but lowered N2 fixation. We concluded that N availability in the reproductive period determined seed yield directly through increasing N supply for seed growth and indirectly through increasing seed N demand with enhanced plant dry mass productivity.  相似文献   

15.
Seven soybeans were selected from 200 entries evaluated for tolerance to soybean cyst nematode (SCN), Heterodera glycines. Tolerance to SCN was measured by comparing the seed yield from aldicarb-treated vs. nontreated plots. A yield response index (YRI) was calculated for each entry: YRI = (seed yield from nontreated plot/seed yield from treated plot) × 100. The soybean entries Coker 156, PI 97100, and S79-8059 exhibited high tolerance (YRI) to SCN when compared to Essex even though they became heavily infected with SCN. Tolerance in soybeans to SCN may be useful in pest management programs designed to stabilize soybean yield.  相似文献   

16.
Lima bean (Phaseolus lunatus L.) cultivars vary widely in their growth habit and seed size. Preliminary experiments indicated that a large-seeded pole cultivar (King of the Garden) formed many more nodules than a small-seeded bush cultivar (Henderson). The relative importance of seed size and shoot mass in determining nodule number and mass was assessed in five lima bean cultivars differing in seed size and growth habit. Between cultivars, significant positive correlations between initial seed mass, plant weight and nodule number and mass were observed during the first four weeks after planting. Comparisons within cultivars indicated a strong correlation between nodule mass and shoot dry weight. The influence of plant morphology on nodule formation and mass was secondary to the effects of seed and shoot mass. As plants matured, the increase in nodule mass paralleled the increase in plant mass, while nodule number was relatively stable after day 18. These results suggest that the highly regulated process of nodule formation was under the influence of seed derived factors, while the continued accumulation of nodule tissue was related to shoot growth.  相似文献   

17.
The growth and development of soybeans (Glycine max L. cv. Amsoy) was studied at soil matric potentials of ?0.1 to ?1.0 bars. Chlorophyll, photosynthesis, and leaf nitrogen per plant was greatest at ?4 bars leaf water potential. Leaf area, number of internodes, plant height and dry weight of vegetative parts declined as leaf water potential decreased from ?2 to ?19 bars. Nitrogen content and nitrate reductase activity per g fresh weight determined the percentage protein of individual seeds but nitrogen content and nitrate reductase activity per plant determined the amount of total seed protein. The protein synthesized in the seed changed little in amino acid composition with changes in leaf water potential. Leaf water potentials above or below ?4 bars decreased yield, total protein and total lipid but plants produced the largest percentage of individual seed protein at ?19 bars leaf water potential.  相似文献   

18.
Two experiments were done in Saxcil growth cabinets in order to investigate the effects of climatic factors and nitrogen nutrition on the growth, reproductive development and seed yield of soyabean cv. TK5. In the first, plants were grown to maturity in eight environments comprising all combinations of two short daylengths (11 h 40 min and 13 h 20 min), two day (27 and 33oC) and two night (19 and 24oC) temperatures. In the second, day temperature was kept at 33oC but the night temperature was varied (19 and 24oC) as was the mineral nitrogen supply (20 and 197 ppm N) to plants which were either inoculated or not with an effective single strain of Rhizobium. Taller, more branched, later flowering plants were produced in the longer daylength but seed yield was hardly affected because the components of yield did not all respond similarly. In the higher day temperature treatments seed yield per plant was reduced by half because all yield components were adversely affected - pods per plant by 34 %, mean seed dry weight by 24 % and seeds per pod just slightly. There was a marked effect of the higher night temperature which promoted early vegetative growth, induced early flowering and although the number of pods per plant was, overall, reduced by 48 %, seed yield per plant was little affected as mean seed dry weight was increased by 37 % and the number of seeds per pod was also increased slightly. Prior to flowering, nodulated plants obtained about two thirds of their total nitrogen requirement via direct uptake and one third through the symbiotic system. Vegetative dry weight and plant nitrogen content were increased by the higher mineral nitrogen level and, although height was slightly diminished, more branches were produced. Seed yield, however, was only slightly increased. These experiments have shown that night temperature is an environmental factor of major importance for the growth of this soyabean cultivar. They have provided, also, a more rational basis for interpreting seasonal variations in growth and seed yield of soyabean in the tropics where, clearly, day and night temperature effects can override those of daylength and nitrogen nutrition.  相似文献   

19.
Summary Spaced plants of a segregating soybean hybrid population in the F6 generation were scored for fourteen quantitative traits related to yield, foliage development and growth duration. Full-sib relationships were used to estimate the genetic additive components of variation and covariation. All genetic correlations between traits, as well as phenotypic and environmental correlations, were estimated separately. A principal component analysis was further performed in all three cases. Genetic correlations identified four different groups of traits comprised of: (I) seed number per pod; (II) mean seed weight; (III) dry weight and chlorophyll content per unit leaf area; (IV) all the other characters, including seed yield and total plant weight at maturity. Among these traits, stem diameter at ground level appeared to be a good indicator of yield. This distribution remained about the same for the environmental correlations, except that growth duration traits and foliage development traits became independent of yield. The implications of these results are discussed in relation to soybean breeding for climatic adaptation.  相似文献   

20.
We investigated the effect of planting density on soybean (Glycine max (L.) Merr.) yield in glasshouse and field experiments. Because net canopy photosynthesis increases with increasing plant density, we hypothesized that increasing planting density would result in increasing rates of dinitrogen fixation in soybeans and higher yields per unit land area.In glasshouse studies, Wayne variety soybeans were planted in 10-cm diameter pots, 1 plant pot-1 in matrices of 10-, 15-, 20-, 25-, or 30-cm equidistant intervals. Bradyrhizobium japonicum inoculum was added to half of the plants in each treatment. Replicate measurements of total stem height, internode lengths, leaf mass, stem mass, root mass, nodule number, nodule mass, and nitrogenase activity were obtained at 3, 6, and 9 weeks post-emergence. Fruits were harvested and counted at week 14. As planting density increased there were (1) altered morphology and growth rates, (2) increased apparent specific nodule activity (SNA), (3) decreased nodule number and mass, and (4) nearly constant fruit and seed production/plant. Expressed on a unit area basis, nitrogen influx and yield increased geometrically as planting density increased, with maximum values observed for 10-cm plantings.Field studies of Wayne, Stein, Williams, and Gold Harvest soybean varieties were made in 1985. Plots were established containing 100 plants spaced at 10-, 20-, and 30-cm distances. Measurements made during the growing season and at harvest established the same relative trends identified from the glasshouse studies. Increasing plant densities resulted in higher yields per unit land. Varietal differences were almost significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号