首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The pathway of cysteine biosynthesis in archaea is still unexplored. Complementation of a cysteine auxotrophic Escherichia coli strain NK3 led to the isolation of the Methanosarcina barkeri cysK gene [encoding O-acetylserine (thiol)-lyase-A], which displays great similarity to bacterial cysK genes. Adjacent to cysK is an open reading frame orthologous to bacterial cysE (serine transacetylase) genes. These two genes could account for cysteine biosynthesis in this archaeon. Analysis of recent genome data revealed the presence of bacteria-like cysM genes [encoding O-acetylserine (thiol)-lyase-B] in Pyrococcus spp., Sulfolobus solfataricus, and Thermoplasma acidophilum. However, no orthologs for these genes can be found in Methanococcus jannaschii, Methanobacterium thermoautotrophicum, and Archaeoglobus fulgidus, implying the existence of unrecognizable genes for the same function or a different cysteine biosynthesis pathway.  相似文献   

2.
A technique based on resistance to azaserine was used to isolate mutants lacking O-acetylserine sulfhydrylase B, one of two enzymes in Salmonella typhimurium capable of synthesizing L-cysteine from O-acetyl-L-serine and sulfide. The mutant locus responsible for this defect has been designated cysM, and genetic mapping suggests that cysM is very close to and perhaps contiguous with cysA. Strains lacking either O-acetylserine sulfhydrylase B or the second sulfhydrylase, O-acetylserine sulfhydrylase A (coded for by cysK), are cysteine prototrophs, but cysK cysM double mutants were found to require cysteine for growth. O-Acetylserine sulfhydrylase B was depressed by growth on a poor sulfur source, and depression was dependent upon both a functional cysB regulatory gene product and the internal inducer of the cysteine biosynthetic pathway, O-acetyl-L-serine. Furthermore, a cysBc strain, in which other cysteine biosynthetic enzymes cannot be fully repressed by growth on L-cystine, was found to be constitutive for O-acetylserine sulfhydrylase B as well. Thus O-acetylserine sulfhydrylase B is regulated by the same factors that control the expression of O-acetylserine sulfhydrylase A and other activities of the cysteine regulon. It is not clear why S. typhimurium has two enzymes whose physiological function appears to be to catalyze the same step of L-cysteine biosynthesis.  相似文献   

3.
Role of a cysteine synthase in Staphylococcus aureus   总被引:1,自引:0,他引:1  
The gram-positive human pathogen Staphylococcus aureus is often isolated with media containing potassium tellurite, to which it has a higher level of resistance than Escherichia coli. The S. aureus cysM gene was isolated in a screen for genes that would increase the level of tellurite resistance of E. coli DH5alpha. The protein encoded by S. aureus cysM is sequentially and functionally homologous to the O-acetylserine (thiol)-lyase B family of cysteine synthase proteins. An S. aureus cysM knockout mutant grows poorly in cysteine-limiting conditions, and analysis of the thiol content in cell extracts showed that the cysM mutant produced significantly less cysteine than wild-type S. aureus SH1000. S. aureus SH1000 cannot use sulfate, sulfite, or sulfonates as the source of sulfur in cysteine biosynthesis, which is explained by the absence of genes required for the uptake and reduction of these compounds in the S. aureus genome. S. aureus SH1000, however, can utilize thiosulfate, sulfide, or glutathione as the sole source of sulfur. Mutation of cysM caused increased sensitivity of S. aureus to tellurite, hydrogen peroxide, acid, and diamide and also significantly reduced the ability of S. aureus to recover from starvation in amino acid- or phosphate-limiting conditions, indicating a role for cysteine in the S. aureus stress response and survival mechanisms.  相似文献   

4.
5.
Triazole and azaserine resistant mutants of E. coli K12 affecting cysK gene coding for O-acetylserine sulphydrylase were isolated. The cysK gene in E. coli is located in the same region of chromosome as the cycK gene in Salmonella typhimurium. All azaserine and some triazole resistant mutants require cysteine for growth at a normal rate. The cysK mutants have reduced sulphate uptake. Stability and transfer by conjugation of triazole resistant phenotype were checked. Differences in sulphate metabolism between closely related organisms E. coli and S. typhimurium are discussed.  相似文献   

6.
We applied the yeast two-hybrid system for screening of a cDNA library of Nicotiana plumbaginifolia for clones encoding plant proteins interacting with two proteins of Escherichia coli: serine acetyltransferase (SAT, the product of cysE gene) and O-acetylserine (thiol)lyase A, also termed cysteine synthase (OASTL-A, the product of cysK gene). Two plant cDNA clones were identified when using the cysE gene as a bait. These clones encode a probable cytosolic isoform of OASTL and an organellar isoform of SAT, respectively, as indicated by evolutionary trees. The second clone, encoding SAT, was identified independently also as a "prey" when using cysK as a bait. Our results reveal the possibility of applying the two-hybrid system for cloning of plant cDNAs encoding enzymes of the cysteine synthase complex in the two-hybrid system. Additionally, using genome walking sequences located upstream of the sat1 cDNA were identified. Subsequently, in silico analyses were performed aiming towards identification of the potential signal peptide and possible location of the deduced mature protein encoded by sat1.  相似文献   

7.
8.
9.
10.
11.
The cysK gene of Escherichia coli K-12 encoding O-acetylserine sulphydrylase A, was cloned and its nucleotide sequence, together with that of the flanking regions, was determined. The deduced amino acid sequence of the carboxy-terminal moiety of O-acetylserine sulphydrylase A shows significant similarity to the amino acid sequence of tryptophan synthase beta chain from several organisms. This sequence similarity is likely to reflect the structural homologies of substrates shared by both enzymes. This may indicate that these proteins, although catalysing different reactions in different metabolic pathways, have evolved from a common ancestral gene.  相似文献   

12.
Two small plasmids from Selenomonas ruminantium strain 19D were cloned in Escherichia coli and completely characterized. Sequence comparison indicated that the plasmids are similar to those reported in genetically vaguely related S. ruminantium strain S20. Small 1.4-kb plasmids pSRD191 and pONE430 are only distantly related (approximately 30 % for deduced Rep protein amino acid sequence) but possess a short highly conserved region outside rep gene. Larger plasmids pSRD192 and pONE429 possess large identical DNA regions in an otherwise dissimilar background. Recombination is proposed as an important mechanism of evolution and spreading of S. ruminantium plasmids.  相似文献   

13.
The O-acetylhomoserine sulfhydrylase (OAHS) gene was cloned from a Selenomonas ruminantium HD4 Lambda ZAP II genomic library by degenerative probe hybridization and complementation. Sequence analysis revealed an 869-bp ORF with a G + C content of 53%. The ORF had significant homology with enzymes involved in homocysteine biosynthesis. A CuraBLASTN homology search showed that the ORF has 63% nucleotide identity with the OAHS of Bacillus stearothermophilus, Corynebacterium glutamicum, and Acremonium chrysogenum, and has 58% identity with met25 of Saccharomyces cerevisiae and metZ of Pseudomonas aeruginosa. The deduced amino acid sequence exhibited 45% similarity with Met25 and MetZ. Further analysis predicted that the gene product was a member of the pyridoxal phosphate enzyme family. Complementation experiments with Escherichia coli metA, metB, and metC mutant strains showed that the S. ruminantium OAHS gene can complement the metC mutation and allow for growth on minimal media that contained sodium thiosulfate as the sole source of sulfur. When the OAHS was disturbed by inserting a EZ::TN pMOD-2(Apramycin) transposon, the complementation was lost. Therefore, these results suggest that the gene functions as OAHS in S. ruminantium HD4.  相似文献   

14.
Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An atypical cystathionine beta-synthase activity using O-acetylserine and homocysteine as substrates was observed for YrhA but not for CysK. The YrhB protein had both cystathionine lyase and homocysteine gamma-lyase activities in vitro. Due to their activity, we propose that YrhA and YrhB should be renamed MccA and MccB for methionine-to-cysteine conversion. Mutants inactivated for cysK or yrhB grew similarly to the wild-type strain in the presence of methionine. In contrast, the growth of an DeltayrhA mutant or a luxS mutant, inactivated for the S-ribosyl-homocysteinase step of the S-adenosylmethionine recycling pathway, was strongly reduced with methionine, whereas a DeltayrhA DeltacysK or cysE mutant did not grow at all under the same conditions. The yrhB and yrhA genes form an operon together with yrrT, mtnN, and yrhC. The expression of the yrrT operon was repressed in the presence of sulfate or cysteine. Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments. The addition of O-acetyl-serine prevented the formation of this protein-DNA complex.  相似文献   

15.
A cryptic plasmid (pSR1) isolated from Selenomonas ruminantium HD4 was previously cloned into the HindIII site of pBR322 and a restriction map was constructed using HindIII, ClaI, BamHI, and PvuII (S. A. Martin and R. G. Dean, Appl. Environ. Microbiol. 55(12), 3035-3038, 1989). Analysis of the nucleotide sequence of pSR1 revealed two major open reading frames (ORFs) located in the minus strand at different frames. Analysis of ORF-1 revealed that it has 325 amino acids with a predicted MW of 36,588, and ORF-2 has 379 amino acids with a predicted MW of 42,651. The ORF-1 amino acids showed 30 to 32% sequence homology to the hypothetical protein YtqA in Bacillus subtilis and another hypothetical protein in the thermophilic bacterium Aquifex aeolicus. ORF-2 showed limited homology (23%) to the hypothetical protein ICFG in the photosynthetic cyanobacteria Synechocystis PCC6803.  相似文献   

16.
The localization of phytase (myo-inositol-hexaphosphate phosphohydrolase) in the ruminal bacteria, Selenomonas ruminantium JY35 and Mitsuokella multiacidus 46/5(2), was determined with transmission electron microscopy. Phosphate produced from the enzymatic dephosphorylation of the calcium salt of phytic acid is precipitated as calcium phosphate. The calcium is then replaced with lead to produce electron-dense lead phosphate. This deposition of lead phosphate localized phytase in S. ruminantium JY35 and M. multiacidus 46/5(2) to the outer membrane, and confirmed intracellular expression of the enzyme in Escherichia coli pSrP.2, the recombinant clone which possesses the gene (phyA) encoding phytase (phyA) in S. ruminantium.  相似文献   

17.
The plasmid pAB65, derived from a specialized transducing phage carrying DNA from about 52 min on the Escherichia coli genome, coded for two polypeptides of Mr approx. 34 000. The expression of one was regulated by cyst(e)ine and the cysB gene product and the other by the cysB gene product only. One of these polypeptides was a subunit of O-acetylserine (thiol)-lyase (EC 4.2.99.8); the other, associated with the E. coli membrane, was the N-terminus of the product of the lambda ben gene. The pattern of peptide synthesis directed by plasmids carrying smaller DNA fragments indicated that the gene for O-acetylserine (thiol)-lyase was transcribed clockwise. The spectrum, amino acid composition and subunit number of the enzyme were determined. The enzyme appears homologous with the Salmonella typhimurium cysK gene product. This provides further evidence for the inversion of this region of the genome.  相似文献   

18.
A single covalently closed circular plasmid isolated from Selenomonas ruminantium HD4 migrated at 3–5 kilobase pairs (kb). A second band migrating at 23 kb could not be confirmed as plasmid DNA. The plasmid was digested by HindIII. Extraction of plasmid DNA from S. ruminantium HD4 was facilitated by the use of a carbonate buffer wash during cell harvest that allowed for rapid and complete lysis by lysozyme and markedly improved the release of DNA.  相似文献   

19.
Six species of ruminal bacteria were surveyed for the phosphoenolpyruvate (PEP)-dependent phosphorylation of glucose. Selenomonas ruminantium HD4, Streptococcus bovis JB1, and Megasphaera elsdenii B159 all showed significant activity, but Butyrivibrio fibrisolvens 49, Bacteroides succinogenes S85, and Bacteroides ruminicola B1(4) showed low rates of PEP-dependent phosphorylation and much higher rates in the presence of ATP. S. ruminantium HD4, S. bovis JB1, and M. elsdenii B159 also used PEP to phosphorylate the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG). Rates of 2-DG phosphorylation with ATP were negligible for S. bovis JB1 and M. elsdenii B159, but toluene-treated cells of S. ruminantium HD4 phosphorylated 2-DG in the presence of ATP as well as PEP. Cell-free extracts of S. ruminantium HD4 used ATP but not PEP to phosphorylate glucose and 2-DG. Since PEP could serve as a phosphoryl donor in toluene-treated cells but not in cell-free extracts, there was evidence for membrane and hence phosphotransferase system involvement in the PEP-dependent activity. The ATP-dependent phosphorylating enzymes from S. ruminantium HD4 and S. bovis JB1 had molecular weights of approximately 48,000 and were not inhibited by glucose 6-phosphate. Based on these criteria, they were glucokinases rather than hexokinases. The S. ruminantium HD4 glucokinase was competitively inhibited by 2-DG and mannose, sugars that differ from glucose in the C-2 position. Since 2-DG was a competitive inhibitor of glucose, the same enzyme probably phosphorylates both sugars. The S. bovis JB1 glucokinase was not inhibited by either 2-DG or mannose and had a higher Km and Vmax for glucose.  相似文献   

20.
The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon. Using DNA microarrays we found that, in addition to cysH, almost all of the genes required for sulfate assimilation are constitutively expressed in cysK mutants. These results indicate that CysK, besides its enzymatic role in cysteine biosynthesis, is a global negative regulator of genes involved in sulfur metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号