首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phytopathogenic fungus Venturia inaequalis causes scab of apple. Once this fungus penetrates the plant surface, it forms a specialized body called a stroma between the inner cuticle surface and the epidermal cell wall. A novel V. inaequalis gene, cin1, is strongly up-regulated in the early stages of infection. This gene codes for a 523 residue secreted protein, containing eight imperfect repeats of 60 amino acids. Cin1 was expressed in the methanolytic yeast Pichia pastoris using the pPICZ vector system. A protein of 57 kDa was secreted by these transformants and peptide fingerprinting indicated that it was the Cin1 protein product. Multiple angle laser light scattering confirmed the predicted mass of Cin1, showing it was not glycosylated by Pichia and was monomeric in solution. Through measurements of the hydrodynamic properties of Cin1, the experimental Stokes radius of Cin1 was calculated and corresponded to the theoretical value for a natively folded globular protein of size 57 kDa. The mobility of recombinant Cin1 on native PAGE was also consistent with that of a folded protein. To simplify future structural analyses, a two-domain truncated version, Cin1-2D, consisting of domains one and two, was also expressed using the same vector system. Both proteins were purified to homogeneity. Conditions for maximal (>98%) incorporation of 13C and 15N were determined. A mouse polyclonal antibody and three monoclonal antibodies (MAbs) were raised against the full-length version of Cin1. Analysis of the three MAbs using surface plasmon resonance indicated binding to distinct epitopes on the Cin1 protein. Western blots confirmed the different specificities of each MAb.  相似文献   

2.
The manifestation of virulence traits in Cryptococcus neoformans is thought to rely on intracellular transport, a process not fully explored in this pathogenic fungus. Through interaction cloning, we identified a multi‐modular protein, Cin1 (cryptococcal intersectin 1), whose domain structure is similar to that of the human endocytic protein ITSN1. Cin1 contains an N‐terminal EH domain, a central coiled‐coil region, a WH2 domain, two SH3 domains and a C‐terminal RhoGEF (DH)‐PH domain. Interestingly, alternative mRNA splicing resulted in two Cin1 isoforms, and Cin1 homologues are also restricted to basidiomycetous fungi. Disruption of the CIN1 gene had a pleiotropic effect on growth, normal cytokinesis, intracellular transports and the production of several virulence factors. Additionally, Cin1 interacts with cryptococcal Cdc42 and Wsp1 (a WASP homologue) proteins in vitro, suggesting a conserved role in the regulation of the actin cytoskeleton. However, deletion of RhoGEF or SH3 and RhoGEF domains did not result in any phenotypic changes, suggesting that functional redundancy exists in proteins containing similar domains or that the activities by other domains are necessary for Cin1 function. Our study presents the first evidence of a multi‐modular protein whose function in intracellular transport underlies the growth, differentiation and virulence of a pathogenic microorganism.  相似文献   

3.
The widespread occurrence of Wolbachia in arthropods and nematodes suggests that this intracellular, maternally inherited endosymbiont has the ability to cross species boundaries. However, direct evidence for such a horizontal transmission of Wolbachia in nature is scarce. Here, we compare the well‐characterized Wolbachia infection of the European cherry fruit fly, Rhagoletis cerasi, with that of the North American eastern cherry fruit fly, Rhagoletis cingulata, recently introduced to Europe. Molecular genetic analysis of Wolbachia based on multilocus sequence typing and the Wolbachia surface protein wsp showed that all R. cingulata individuals are infected with wCin2 identical to wCer2 in R. cerasi. In contrast, wCin1, a strain identical to wCer1 in R. cerasi, was present in several European populations of R. cingulata, but not in any individual from the United States. Surveys of R. cingulata from Germany and Hungary indicated that in some populations, the frequency of wCin1 increased significantly in just a few years with at least two independent horizontal transmission events. This is corroborated by the analysis of the mitochondrial cytochrome oxidase II gene that showed association of wCin1 with two distinct haplotypes in Germany, one of which is also infected with wCin1 in Hungary. In summary, our study provides strong evidence for a very recent inter‐specific Wolbachia transmission with a subsequent spatial spread in field populations.  相似文献   

4.
The bipolar kinesin-5 motors are one of the major players that govern mitotic spindle dynamics. Their bipolar structure enables them to cross-link and slide apart antiparallel microtubules (MTs) emanating from the opposing spindle poles. The budding yeast kinesin-5 Cin8 was shown to switch from fast minus-end- to slow plus-end-directed motility upon binding between antiparallel MTs. This unexpected finding revealed a new dimension of cellular control of transport, the mechanism of which is unknown. Here we have examined the role of the C-terminal tail domain of Cin8 in regulating directionality. We first constructed a stable dimeric Cin8/kinesin-1 chimera (Cin8Kin), consisting of head and neck linker of Cin8 fused to the stalk of kinesin-1. As a single dimeric motor, Cin8Kin switched frequently between plus and minus directionality along single MTs, demonstrating that the Cin8 head domains are inherently bidirectional, but control over directionality was lost. We next examined the activity of a tetrameric Cin8 lacking only the tail domains (Cin8Δtail). In contrast to wild-type Cin8, the motility of single molecules of Cin8Δtail in high ionic strength was slow and bidirectional, with almost no directionality switches. Cin8Δtail showed only a weak ability to cross-link MTs in vitro. In vivo, Cin8Δtail exhibited bias toward the plus-end of the MTs and was unable to support viability of cells as the sole kinesin-5 motor. We conclude that the tail of Cin8 is not necessary for bidirectional processive motion, but is controlling the switch between plus- and minus-end-directed motility.  相似文献   

5.
Summary Bacteriophage P1 encodes a site-specific recombinase, Cin, which regulates the alternate expression of tail fibre genes by inverting a DNA segment. To define regions of Cin important for the recombination process, we have isolated and characterised 24 different mutations of the cin gene. Most of these mutations affected amino acids that are highly conserved in other related recombinases. Some of these mutants complement each other in vivo. This intragenic complementation could be due to the assembly of heteromers containing both mutant proteins, suggesting that the active enzyme is at least a dimer.  相似文献   

6.
Venturia inaequalis is a hemi-biotrophic fungus that causes scab disease of apple. A recently-identified gene from this fungus, cin1 (cellophane-induced 1), is up-regulated over 1000-fold in planta and considerably on cellophane membranes, and encodes a cysteine-rich secreted protein of 523 residues with eight imperfect tandem repeats of ~60 amino acids. The Cin1 sequence has no homology to known proteins and appears to be genus-specific; however, Cin1 repeats and other repeat domains may be structurally similar. An NMR-derived structure of the first two repeat domains of Cin1 (Cin1-D1D2) and a low-resolution model of the full-length protein (Cin1-FL) using SAXS data were determined. The structure of Cin1-D1D2 reveals that each domain comprises a core helix-loop-helix (HLH) motif as part of a three-helix bundle, and is stabilized by two intra-domain disulfide bonds. Cin1-D1D2 adopts a unique protein fold as DALI and PDBeFOLD analysis identified no structural homology. A (15)N backbone NMR dynamic analysis of Cin1-D1D2 showed that a short stretch of the inter-domain linker has large amplitude motions that give rise to reciprocal domain-domain mobility. This observation was supported by SAXS data modeling, where the scattering length density envelope remains thick at the domain-domain boundary, indicative of inter-domain dynamics. Cin1-FL SAXS data models a loosely-packed arrangement of domains, rather than the canonical parallel packing of adjacent HLH repeats observed in α-solenoid repeat proteins. Together, these data suggest that the repeat domains of Cin1 display a "beads-on-a-string" organization with inherent inter-domain flexibility that is likely to facilitate interactions with target ligands.  相似文献   

7.
8.
Inflammatory process has a fundamental role in the pathogenesis of Alzheimer’s disease and insoluble amyloid beta deposits and neurofibrillary tangles provide the obvious stimuli for inflammation. The present study demonstrate the effect of pretreatment of 1,8-cineole (Cin) on inflammation induced by Aβ(25–35) in differentiated PC12 cells. The cells were treated with Cin at different doses for 24 h and then replaced by media containing Aβ(25–35) for another 24 h. The cell viability was decreased in Aβ(25–35) treated cells which was significantly restored by Cin pretreatment. Cin successfully reduced the mitochondrial membrane potential, ROS and NO levels in Aβ(25–35) treated cells. Cin also lowered the levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 in Aβ(25–35) treated cells. Moreover, Cin also succeeded in lowering the expression of NOS-2, COX-2 and NF-κB. This study suggests the protective effects of Cin on inflammation and provides additional evidence for its potential beneficial use in therapy as an anti-inflammatory agent in neurodegenerative disease.  相似文献   

9.
In the yeast Schizosaccharomyces pombe, the molecular chaperone calnexin (Cnx1p) has been shown to be essential for viability. However, we recently reported that, under certain circumstances, S. pombe cells are able to survive in the absence of calnexin/Cnx1p, indicating that an inducible pathway can complement the calnexin/Cnx1p essential function(s). This calnexin-independent state (Cin) is transmitted by a nonchromosomal proteinaceous element exhibiting several prion-like properties. To assess to what extent the Cin state compensates for the absence of calnexin/Cnx1p, the Cin strain was further characterized. Cin cells exhibited cell-wall defects, sensitivity to heat shock, as well as higher secretion levels of a model glycoprotein. Together, these results indicate that the Cin state does not compensate for all calnexin/Cnx1p functions. Reintroduction of plasmid-borne cnx1(+) partially rescued most but not all of the phenotypes displayed by Cin cells. Interestingly, Cin cells in stationary phase exhibited increased levels of caspase activation, and this phenotype was not suppressed by the reintroduction of cnx1(+), suggesting that cells in the Cin state are subjected to a stress other than the absence of calnexin/Cnx1p.  相似文献   

10.
Saccharomyces cerevisiae Cin8p belongs to the BimC family of kinesin-related motor proteins that are essential for spindle assembly. Cin8p levels were found to oscillate in the cell cycle due in part to a high rate of degradation imposed from the end of mitosis through the G1 phase. Cin8p degradation required the anaphase-promoting complex ubiquitin ligase and its late mitosis regulator Cdh1p but not the early mitosis regulator Cdc20p. Cin8p lacks a functional destruction box sequence that is found in the majority of anaphase-promoting complex substrates. We carried out an extensive mutagenesis study to define the cis-acting sequence required for Cin8p degradation in vivo. The C terminus of Cin8p contains two elements required for its degradation: 1) a bipartite destruction sequence composed of a KEN-box plus essential residues within the downstream 22 amino acids and 2) a nuclear localization signal. The bipartite destruction sequence appears in other BimC kinesins as well. Expression of nondegradable Cin8p showed very mild phenotypic effects, with an increase in the fraction of mitotic cells with broken spindles.  相似文献   

11.
During mitosis, sister chromatids congress on both sides of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have a pivotal role in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are involved. Here, we show that the microtubule plus-end tracking protein Bik1—the budding yeast ortholog of CLIP-170—is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell cycle–dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to slower cell-cycle progression characterized by a delayed metaphase–anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in the Bik1-NES mutant and does not localize to the unclustered kinetochores. We propose that Bik1 functions with Cin8 to regulate kinetochore–microtubule dynamics for correct kinetochore positioning and chromosome congression.  相似文献   

12.
Two Saccharomyces cerevisiae kinesin-related motors, Cin8p and Kip1p, perform an essential role in the separation of spindle poles during spindle assembly and a major role in spindle elongation. Cin8p and Kip1p are also required to prevent an inward spindle collapse prior to anaphase. A third kinesin-related motor, Kar3p, may act antagonistically to Cin8p and Kip1p since loss of Kar3p partially suppresses the spindle collapse in cin8 kip1 mutants. We have tested the relationship between Cin8p and Kar3p by overexpressing both motors using the inducible GAL1 promoter. Overexpression of KAR3 results in a shrinkage of spindle size and a temperature-dependent inhibition of the growth of wild-type cells. Excess Kar3p has a stronger inhibitory effect on the growth of cin8 kip1 mutants and can completely block anaphase spindle elongation in these cells. In contrast, overexpression of CIN8 leads to premature spindle elongation in all cells tested. This is the first direct demonstration of antagonistic motors acting on the intact spindle and suggests that spindle length is determined by the relative activity of Kar3p-like and Cin8p/Kip1p-like motors.  相似文献   

13.
Wu SJ  Ng LT  Lin CC 《Life sciences》2005,77(8):938-951
Cinnamaldehyde (Cin) has been shown to be effective in inducing apoptotic cell death in a number of human cancer cells. However, the intracellular death signaling mechanisms by which Cin inhibits tumor cell growth are poorly understood. In this study, we investigated the effect of mitogen-activated protein kinases (MAPKs) inhibitors [namely SP600125 (a specific JNK inhibitor), SB203580 (a specific p38 inhibitor) and PD98059 (a specific ERK inhibitor)] on the stress-responsive MAPK pathway induced by Cin in PLC/PRF/5 cells. Trypan blue staining assay indicated that Cin was cytotoxic to PLC/PRF/5 cells. Cin caused cell cycle perturbation (S-phase arrest) and triggered apoptosis as revealed by the externalization of annexin V-targeted phosphatidylserine and accumulation of sub-G1 peak. It down-regulated the Bcl-2 and Mcl-1 expression, and up-regulated Bax protein in a time-response manner. Treatment with 1 microM Cin resulted in an activation of caspase-8 and cleavage of Bid to its truncated form in a time-dependent pattern. JNK, ERK and p38 kinases in cells were activated and phosphorylated after Cin treatment. Pre-incubation with SP600125 and SB203580 markedly suppressed the effect of Cin-induced apoptosis, but not PD98059. Both SP600125 and SB203580 significantly prevented the phosphorylation of JNK and p38 proteins, but not ERK. These results conclude that Cin triggers apoptosis in PLC/PRF/5 cells could be through the activation of pro-apoptotic Bcl-2 family (Bax and Bid) proteins and MAPK signaling pathway.  相似文献   

14.
Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes   总被引:9,自引:0,他引:9  
During the course of work aimed at isolating a rice gene from Oryza australiensis by PCR, the oligonucleotide primers used were found to generate a fragment that showed sequence homology to the endonuclease (EN) region of the maize non-LTR retrotransposon (LINE) Cin4. We carried out further PCRs using oligonucleotide primers that hybridized to these sequences, and found that they amplified several fragments, each with homology to the EN regions, from Oryza sativa cv. Nipponbare as well as O. australiensis. We mapped the approximate locations of two rice LINE homologues by screening clones in a YAC library made from a rice (O. sativa) genome, and found that each homologue was present in a low copy number apparently at nonspecific regions on rice chromosomes. We then carried out PCR using degenerate oligonucleotide primers which hybridized to the rice LINE homologues and Cin4 to ascertain whether LINE homologues are present in a variety of members of the plant kingdom, including angiosperms, gymnosperms, bracken, horsetail and liverwort. Cloning and nucleotide sequencing revealed that 53 clones obtained from 27 out of 33 plant species contained LINE homologues. In addition to these homologues, we identified four homologues with EN regions in the Arabidopsis thaliana genome by a computer search of databases. The nucleotide sequences of almost all the LINE homologues were greatly diverged, but the derived amino acid sequences were well conserved, and all contained glutamic acid and tyrosine residues at almost the same relative positions as in the the active site regions of AP (apurinic/apyrimidinic)-endonucleases. The EN regions in the LINE homologues from closely related plant species show a closer phylogenetic relationship, indicating that sequence divergence during vertical transmission has been a major influence upon the evolution of plant LINEs. Received: 13 July 1998 / Accepted: 13 October 1998  相似文献   

15.
We have developed microtubule binding and motility assays for Cin8p, a kinesin-related mitotic spindle motor protein from Saccharomyces cerevisiae. The methods examine Cin8p rapidly purified from crude yeast cell extracts. We created a recombinant form of CIN8 that fused the biotin carrying polypeptide from yeast pyruvate carboxylase to the carboxyl terminus of Cin8p. This form was biotinated in yeast cells and provided Cin8p activity in vivo. Avidin-coated glass surfaces were used to specifically bind biotinated Cin8p from crude extracts. Microtubules bound to the Cin8p-coated surfaces and moved at 3.4 +/- 0.5 micrometer/min in the presence of ATP. Force production by Cin8p was directed toward the plus ends of microtubules. A mutation affecting the microtubule-binding site within the motor domain (cin8-F467A) decreased Cin8p's ability to bind microtubules to the glass surface by >10-fold, but reduced gliding velocity by only 35%. The cin8-3 mutant form, affecting the alpha2 helix of the motor domain, caused a moderate defect in microtubule binding, but motility was severely affected. cin8-F467A cells, but not cin8-3 cells, were greatly impaired in bipolar spindle forming ability. We conclude that microtubule binding by Cin8p is more important than motility for proper spindle formation.  相似文献   

16.
Kinesin-5 motor proteins are evolutionarily conserved and perform essential roles in mitotic spindle assembly and spindle elongation during anaphase. Previous studies demonstrated a specialized homotetrameric structure with two pairs of catalytic domains, one at each end of a dumbbell-shaped molecule. This suggests that they perform their spindle roles by cross-linking and sliding antiparallel spindle microtubules. However, the exact kinesin-5 sequence elements that are important for formation of the tetrameric complexes have not yet been identified. In addition, it has not been demonstrated that the homotetrameric form of these proteins is essential for their biological functions. Thus, we investigated a series of Saccharomyces cerevisiae Cin8p truncations and internal deletions, in order to identify structural elements in the Cin8p sequence that are required for Cin8p functionality, spindle localization, and multimerization. We found that all variants of Cin8p that are functional in vivo form tetrameric complexes. The first coiled-coil domain in the stalk of Cin8p, a feature that is shared by all kinesin-5 homologues, is required for its dimerization, and sequences in the last part of the stalk, specifically those likely involved in coiled-coil formation, are required for Cin8p tetramerization. We also found that dimeric forms of Cin8p that are nonfunctional in vivo can nonetheless bind to microtubules. These findings suggest that binding of microtubules is not sufficient for the functionality of Cin8p and that microtubule cross-linking by the tetrameric complex is essential for Cin8p mitotic functions.  相似文献   

17.
Yeasts have evolved numerous responsive pathways to survive in fluctuating and stressful environments. The endoplasmic reticulum (ER) is sensitive to adverse conditions, which are detected by response pathways to ensure correct protein folding. Calnexin is an ER transmembrane chaperone acting in both quality control of folding and response to persistent stress. Calnexin is a key protein required for viability in certain organisms such as mammals and the fission yeast Schizosaccharomyces pombe . Nevertheless, S. pombe calnexin-independent (Cin) cells were obtained after transient expression of a particular calnexin mutant. The Cin state is dominant, is stably propagated by an epigenetic mechanism and segregates in a non-Mendelian fashion to the meiotic progeny. The nucleolar protein Cif1p was identified as an inducer of the Cin state in a previous genetic screen. Here, we report the identification of novel inducers isolated in an overexpression genetic screen: pyruvate kinase (Pyk1p) and phosphoglycerate kinase (Pgk1p). Addition of pyruvate, the end product of pyruvate kinase and glycolysis, also induced calnexin independence in a dose-dependent manner. Remarkably, growth in respiration media or cold temperatures induced the appearance of Cin cells at high frequencies. Taken together, our results indicate that the Cin state can be triggered by extracellular changes, suggesting that this state represents an epigenetic adaptative response to environmental modifications.  相似文献   

18.
An Escherichia coli chromosomally coded factor termed FIS (Factor for Inversion Stimulation) stimulates the Cin protein-mediated, site-specific DNA inversion system of bacteriophage P1 more than 500-fold. We have purified FIS and the recombinase Cin, and studied the inversion reaction in vitro. DNA footprinting studies with DNase I showed that Cin specifically binds to the recombination site, called cix. FIS does not bind to cix sites but does bind to a recombinational enhancer sequence that is required in cis for efficient recombination. FIS also binds specifically to sequences outside the enhancer, as well as to sequences unrelated to Cin inversion. On the basis of these data, we discuss the possibility of additional functions for FIS in E. coli.  相似文献   

19.
To study the dynamics of interpolar microtubules (iMTs) in Saccharomyces cerevisiae cells, we photobleached a considerable portion of the middle region of anaphase spindles in cells expressing tubulin‐green fluorescent protein (GFP) and followed fluorescence recovery at the iMT plus‐ends. We found that during anaphase, iMTs show phases of fast growth and shrinkage that are restricted to the iMT plus‐ends. Our data indicate that iMT plus‐end dynamics are regulated during mitosis, as fluorescence recovery was faster in intermediate anaphase (30 s) compared with long (100 s) and pre‐anaphase (80 s) spindles. We also observed that deletion of Cin8, a microtubule‐crosslinking kinesin‐5 motor protein, reduced the recovery rate in anaphase spindles, indicating that Cin8 contributes to the destabilization of iMT plus‐ends. Finally, we show that in cells lacking the midzone organizing protein Ase1, iMTs are highly dynamic and are exchangeable throughout most of their length, indicating that midzone organization is essential for restricting iMT dynamics.  相似文献   

20.
Kinesin-related Cin8p is the most important spindle-pole-separating motor in Saccharomyces cerevisiae but is not essential for cell viability. We identified 20 genes whose products are specifically required by cell deficient for Cin8p. All are associated with mitotic roles and represent at least four different functional pathways. These include genes whose products act in two spindle motor pathways that overlap in function with Cin8p, the kinesin-related Kip1p pathway and the cytoplasmic dynein pathway. In addition, genes required for mitotic spindle checkpoint function and for normal microtubule stability were recovered. Mutant alleles of eight genes caused phenotypes similar to dyn1 (encodes the dynein heavy chain), including a spindle-positioning defect. We provide evidence that the products of these genes function in concept with dynein. Among the dynein pathway gene products, we found homologues of the cytoplasmic dynein intermediate chain, the p150Glued subunit of the dynactin complex, and human LIS-1, required for normal brain development. These findings illustrate the complex cellular interactions exhibited by Cin8p, a member of a conserved spindle motor family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号