首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major bottleneck in comparative modeling is the alignment quality; this is especially true for proteins whose distant relationships could be reliably recognized only by recent advances in fold recognition. The best algorithms excel in recognizing distant homologs but often produce incorrect alignments for over 50% of protein pairs in large fold-prediction benchmarks. The alignments obtained by sequence-sequence or sequence-structure matching algorithms differ significantly from the structural alignments. To study this problem, we developed a simplified method to explicitly enumerate all possible alignments for a pair of proteins. This allowed us to estimate the number of significantly different alignments for a given scoring method that score better than the structural alignment. Using several examples of distantly related proteins, we show that for standard sequence-sequence alignment methods, the number of significantly different alignments is usually large, often about 10(10) alternatives. This distance decreases when the alignment method is improved, but the number is still too large for the brute force enumeration approach. More effective strategies were needed, so we evaluated and compared two well-known approaches for searching the space of suboptimal alignments. We combined their best features and produced a hybrid method, which yielded alignments that surpassed the original alignments for about 50% of protein pairs with minimal computational effort.  相似文献   

2.
Multiple sequence alignment (MSA) accuracy is important, but there is no widely accepted method of judging the accuracy that different alignment algorithms give. We present a simple approach to detecting two types of error, namely block shifts and the misplacement of residues within a gap. Given a MSA, subsets of very similar sequences are generated through the use of a redundancy filter, typically using a 70–90% sequence identity cut-off. Subsets thus produced are typically small and degenerate, and errors can be easily detected even by manual examination. The errors, albeit minor, are inevitably associated with gaps in the alignment, and so the procedure is particularly relevant to homology modelling of protein loop regions. The usefulness of the approach is illustrated in the context of the universal but little known [K/R]KLH motif that occurs in intracellular loop 1 of G protein coupled receptors (GPCR); other issues relevant to GPCR modelling are also discussed.  相似文献   

3.
Detection of homologous proteins with low-sequence identity to a given target (remote homologues) is routinely performed with alignment algorithms that take advantage of sequence profile. In this article, we investigate the efficacy of different alignment procedures for the task at hand on a set of 185 protein pairs with similar structures but low-sequence similarity. Criteria based on the SCOP label detection and MaxSub scores are adopted to score the results. We investigate the efficacy of alignments based on sequence-sequence, sequence-profile, and profile-profile information. We confirm that with profile-profile alignments the results are better than with other procedures. In addition, we report, and this is novel, that the selection of the results of the profile-profile alignments can be improved by using Shannon entropy, indicating that this parameter is important to recognize good profile-profile alignments among a plethora of meaningless pairs. By this, we enhance the global search accuracy without losing sensitivity and filter out most of the erroneous alignments. We also show that when the entropy filtering is adopted, the quality of the resulting alignments is comparable to that computed for the target and template structures with CE, a structural alignment program.  相似文献   

4.
Sequence alignment profiles have been shown to be very powerful in creating accurate sequence alignments. Profiles are often used to search a sequence database with a local alignment algorithm. More accurate and longer alignments have been obtained with profile-to-profile comparison. There are several steps that must be performed in creating profile-profile alignments, and each involves choices in parameters and algorithms. These steps include (1) what sequences to include in a multiple alignment used to build each profile, (2) how to weight similar sequences in the multiple alignment and how to determine amino acid frequencies from the weighted alignment, (3) how to score a column from one profile aligned to a column of the other profile, (4) how to score gaps in the profile-profile alignment, and (5) how to include structural information. Large-scale benchmarks consisting of pairs of homologous proteins with structurally determined sequence alignments are necessary for evaluating the efficacy of each scoring scheme. With such a benchmark, we have investigated the properties of profile-profile alignments and found that (1) with optimized gap penalties, most column-column scoring functions behave similarly to one another in alignment accuracy; (2) some functions, however, have much higher search sensitivity and specificity; (3) position-specific weighting schemes in determining amino acid counts in columns of multiple sequence alignments are better than sequence-specific schemes; (4) removing positions in the profile with gaps in the query sequence results in better alignments; and (5) adding predicted and known secondary structure information improves alignments.  相似文献   

5.
The PSI-BLAST algorithm has been acknowledged as one of the most powerful tools for detecting remote evolutionary relationships by sequence considerations only. This has been demonstrated by its ability to recognize remote structural homologues and by the greatest coverage it enables in annotation of a complete genome. Although recognizing the correct fold of a sequence is of major importance, the accuracy of the alignment is crucial for the success of modeling one sequence by the structure of its remote homologue. Here we assess the accuracy of PSI-BLAST alignments on a stringent database of 123 structurally similar, sequence-dissimilar pairs of proteins, by comparing them to the alignments defined on a structural basis. Each protein sequence is compared to a nonredundant database of the protein sequences by PSI-BLAST. Whenever a pair member detects its pair-mate, the positions that are aligned both in the sequential and structural alignments are determined, and the alignment sensitivity is expressed as the percentage of these positions out of the structural alignment. Fifty-two sequences detected their pair-mates (for 16 pairs the success was bi-directional when either pair member was used as a query). The average percentage of correctly aligned residues per structural alignment was 43.5+/-2.2%. Other properties of the alignments were also examined, such as the sensitivity vs. specificity and the change in these parameters over consecutive iterations. Notably, there is an improvement in alignment sensitivity over consecutive iterations, reaching an average of 50.9+/-2.5% within the five iterations tested in the current study.  相似文献   

6.
Cozzetto D  Tramontano A 《Proteins》2005,58(1):151-157
Comparative modeling is the method of choice, whenever applicable, for protein structure prediction, not only because of its higher accuracy compared to alternative methods, but also because it is possible to estimate a priori the quality of the models that it can produce, thereby allowing the usefulness of a model for a given application to be assessed beforehand. By and large, the quality of a comparative model depends on two factors: the extent of structural divergence between the target and the template and the quality of the sequence alignment between the two protein sequences. The latter is usually derived from a multiple sequence alignment (MSA) of as many proteins of the family as possible, and its accuracy depends on the number and similarity distribution of the sequences of the protein family. Here we describe a method to evaluate the expected difficulty, and by extension accuracy, of a comparative model on the basis of the MSA used to build it. The parameter that we derive is used to compare the results obtained in the last two editions of the Critical Assessment of Methods for Structure Prediction (CASP) experiment as a function of the difficulty of the modeling exercise. Our analysis demonstrates that the improvement in the scope and quality of comparative models between the two experiments is largely due to the increased number of available protein sequences and to the consequent increased chance that a large and appropriately spaced set of protein sequences homologous to the proteins of interest is available.  相似文献   

7.
A novel method has been developed for acquiring the correct alignment of a query sequence against remotely homologous proteins by extracting structural information from profiles of multiple structure alignment. A systematic search algorithm combined with a group of score functions based on sequence information and structural information has been introduced in this procedure. A limited number of top solutions (15,000) with high scores were selected as candidates for further examination. On a test-set comprising 301 proteins from 75 protein families with sequence identity less than 30%, the proportion of proteins with completely correct alignment as first candidate was improved to 39.8% by our method, whereas the typical performance of existing sequence-based alignment methods was only between 16.1% and 22.7%. Furthermore, multiple candidates for possible alignment were provided in our approach, which dramatically increased the possibility of finding correct alignment, such that completely correct alignments were found amongst the top-ranked 1000 candidates in 88.3% of the proteins. With the assistance of a sequence database, completely correct alignment solutions were achieved amongst the top 1000 candidates in 94.3% of the proteins. From such a limited number of candidates, it would become possible to identify more correct alignment using a more time-consuming but more powerful method with more detailed structural information, such as side-chain packing and energy minimization, etc. The results indicate that the novel alignment strategy could be helpful for extending the application of highly reliable methods for fold identification and homology modeling to a huge number of homologous proteins of low sequence similarity. Details of the methods, together with the results and implications for future development are presented.  相似文献   

8.
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain.  相似文献   

9.

Background

Guide-trees are used as part of an essential heuristic to enable the calculation of multiple sequence alignments. They have been the focus of much method development but there has been little effort at determining systematically, which guide-trees, if any, give the best alignments. Some guide-tree construction schemes are based on pair-wise distances amongst unaligned sequences. Others try to emulate an underlying evolutionary tree and involve various iteration methods.

Results

We explore all possible guide-trees for a set of protein alignments of up to eight sequences. We find that pairwise distance based default guide-trees sometimes outperform evolutionary guide-trees, as measured by structure derived reference alignments. However, default guide-trees fall way short of the optimum attainable scores. On average chained guide-trees perform better than balanced ones but are not better than default guide-trees for small alignments.

Conclusions

Alignment methods that use Consistency or hidden Markov models to make alignments are less susceptible to sub-optimal guide-trees than simpler methods, that basically use conventional sequence alignment between profiles. The latter appear to be affected positively by evolutionary based guide-trees for difficult alignments and negatively for easy alignments. One phylogeny aware alignment program can strongly discriminate between good and bad guide-trees. The results for randomly chained guide-trees improve with the number of sequences.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-338) contains supplementary material, which is available to authorized users.  相似文献   

10.
Elofsson A 《Proteins》2002,46(3):330-339
One of the most central methods in bioinformatics is the alignment of two protein or DNA sequences. However, so far large-scale benchmarks examining the quality of these alignments are scarce. On the other hand, recently several large-scale studies of the capacity of different methods to identify related sequences has led to new insights about the performance of fold recognition methods. To increase our understanding about fold recognition methods, we present a large-scale benchmark of alignment quality. We compare alignments from several different alignment methods, including sequence alignments, hidden Markov models, PSI-BLAST, CLUSTALW, and threading methods. For most methods, the alignment quality increases significantly at about 20% sequence identity. The difference in alignment quality between different methods is quite small, and the main difference can be seen at the exact positioning of the sharp rise in alignment quality, that is, around 15-20% sequence identity. The alignments are improved by using structural information. In general, the best alignments are obtained by methods that use predicted secondary structure information and sequence profiles obtained from PSI-BLAST. One interesting observation is that for different pairs many different methods create the best alignments. This finding implies that if a method that could select the best alignment method for each pair existed, a significant improvement of the alignment quality could be gained.  相似文献   

11.
Protein structure alignment methods are essential for many different challenges in protein science, such as the determination of relations between proteins in the fold space or the analysis and prediction of their biological function. A number of different pairwise and multiple structure alignment (MStA) programs have been developed and provided to the community. Prior knowledge of the expected alignment accuracy is desirable for the user of such tools. To retrieve an estimate of the performance of current structure alignment methods, we compiled a test suite taken from literature and the SISYPHUS database consisting of proteins that are difficult to align. Subsequently, different MStA programs were evaluated regarding alignment correctness and general limitations. The analysis shows that there are large differences in the success between the methods in terms of applicability and correctness. The latter ranges from 44 to 75% correct core positions. Taking only the best method result per test case this number increases to 84%. We conclude that the methods available are applicable to difficult cases, but also that there is still room for improvements in both, practicability and alignment correctness. An approach that combines the currently available methods supported by a proper score would be useful. Until then, a user should not rely on just a single program.  相似文献   

12.
Alignment of protein sequences by their profiles   总被引:7,自引:0,他引:7  
The accuracy of an alignment between two protein sequences can be improved by including other detectably related sequences in the comparison. We optimize and benchmark such an approach that relies on aligning two multiple sequence alignments, each one including one of the two protein sequences. Thirteen different protocols for creating and comparing profiles corresponding to the multiple sequence alignments are implemented in the SALIGN command of MODELLER. A test set of 200 pairwise, structure-based alignments with sequence identities below 40% is used to benchmark the 13 protocols as well as a number of previously described sequence alignment methods, including heuristic pairwise sequence alignment by BLAST, pairwise sequence alignment by global dynamic programming with an affine gap penalty function by the ALIGN command of MODELLER, sequence-profile alignment by PSI-BLAST, Hidden Markov Model methods implemented in SAM and LOBSTER, pairwise sequence alignment relying on predicted local structure by SEA, and multiple sequence alignment by CLUSTALW and COMPASS. The alignment accuracies of the best new protocols were significantly better than those of the other tested methods. For example, the fraction of the correctly aligned residues relative to the structure-based alignment by the best protocol is 56%, which can be compared with the accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and 43% for the other methods, respectively. The new method is currently applied to large-scale comparative protein structure modeling of all known sequences.  相似文献   

13.
Cheng H  Kim BH  Grishin NV 《Proteins》2008,70(4):1162-1166
We describe MALIDUP (manual alignments of duplicated domains), a database of 241 pairwise structure alignments for homologous domains originated by internal duplication within the same polypeptide chain. Since duplicated domains within a protein frequently diverge in function and thus in sequence, this would be the first database of structurally similar homologs that is not strongly biased by sequence or functional similarity. Our manual alignments in most cases agree with the automatic structural alignments generated by several commonly used programs. This carefully constructed database could be used in studies on protein evolution and as a reference for testing structure alignment programs. The database is available at http://prodata.swmed.edu/malidup.  相似文献   

14.
An open question in protein homology modeling is, how well do current modeling packages satisfy the dual criteria of quality of results and practical ease of use? To address this question objectively, we examined homology‐built models of a variety of therapeutically relevant proteins. The sequence identities across these proteins range from 19% to 76%. A novel metric, the difference alignment index (DAI), is developed to aid in quantifying the quality of local sequence alignments. The DAI is also used to construct the relative sequence alignment (RSA), a new representation of global sequence alignment that facilitates comparison of sequence alignments from different methods. Comparisons of the sequence alignments in terms of the RSA and alignment methodologies are made to better understand the advantages and caveats of each method. All sequence alignments and corresponding 3D models are compared to their respective structure‐based alignments and crystal structures. A variety of protein modeling software was used. We find that at sequence identities >40%, all packages give similar (and satisfactory) results; at lower sequence identities (<25%), the sequence alignments generated by Profit and Prime, which incorporate structural information in their sequence alignment, stand out from the rest. Moreover, the model generated by Prime in this low sequence identity region is noted to be superior to the rest. Additionally, we note that DSModeler and MOE, which generate reasonable models for sequence identities >25%, are significantly more functional and easier to use when compared with the other structure‐building software.  相似文献   

15.
张大鹏  王进  杨洁  华子春 《病毒学报》2004,20(4):371-377
严重急性呼吸综合片冠状病毒(SARS病毒)的高危害性,使得研究其分子机制并开发有效的治疗药物成为当前生物学家面临的紧迫任务.  相似文献   

16.
The most popular algorithms employed in the pairwise alignment of protein primary structures (Smith-Watermann (SW) algorithm, FASTA, BLAST, etc.) only analyze the amino acid sequence. The SW algorithm is the most accurate, yielding alignments that agree best with superimpositions of the corresponding spatial structures of proteins. However, even the SW algorithm fails to reproduce the spatial structure alignment when the sequence identity is lower than 30%. The objective of this work was to develop a new and more accurate algorithm taking the secondary structure of proteins into account. The alignments generated by this algorithm and having the maximal weight with the secondary structure considered proved to be more accurate than SW alignments. With sequences having less than 30% identity, the accuracy (i.e., the portion of reproduced positions of a reference alignment obtained by superimposing the protein spatial structures) of the new algorithm is 58 vs. 35% of the SW algorithm. The accuracy of the new algorithm is much the same with secondary structures established experimentally or predicted theoretically. Hence, the algorithm is applicable to proteins with unknown spatial structures. The program is available at ftp://194.149.64.196/STRUSWER/.  相似文献   

17.
Sequence comparison methods based on position-specific score matrices (PSSMs) have proven a useful tool for recognition of the divergent members of a protein family and for annotation of functional sites. Here we investigate one of the factors that affects overall performance of PSSMs in a PSI-BLAST search, the algorithm used to construct the seed alignment upon which the PSSM is based. We compare PSSMs based on alignments constructed by global sequence similarity (ClustalW and ClustalW-pairwise), local sequence similarity (BLAST), and local structure similarity (VAST). To assess performance with respect to identification of conserved functional or structural sites, we examine the accuracy of the three-dimensional molecular models predicted by PSSM-sequence alignments. Using the known structures of those sequences as the standard of truth, we find that model accuracy varies with the algorithm used for seed alignment construction in the pattern local-structure (VAST) > local-sequence (BLAST) > global-sequence (ClustalW). Using structural similarity of query and database proteins as the standard of truth, we find that PSSM recognition sensitivity depends primarily on the diversity of the sequences included in the alignment, with an optimum around 30-50% average pairwise identity. We discuss these observations, and suggest a strategy for constructing seed alignments that optimize PSSM-sequence alignment accuracy and recognition sensitivity.  相似文献   

18.
Multiple sequence alignments are fundamental to many sequence analysis methods. Most alignments are computed using the progressive alignment heuristic. These methods are starting to become a bottleneck in some analysis pipelines when faced with data sets of the size of many thousands of sequences. Some methods allow computation of larger data sets while sacrificing quality, and others produce high‐quality alignments, but scale badly with the number of sequences. In this paper, we describe a new program called Clustal Omega, which can align virtually any number of protein sequences quickly and that delivers accurate alignments. The accuracy of the package on smaller test cases is similar to that of the high‐quality aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality. Clustal Omega also has powerful features for adding sequences to and exploiting information in existing alignments, making use of the vast amount of precomputed information in public databases like Pfam.  相似文献   

19.
Secondary structure predictions are increasingly becoming the workhorse for several methods aiming at predicting protein structure and function. Here we use ensembles of bidirectional recurrent neural network architectures, PSI-BLAST-derived profiles, and a large nonredundant training set to derive two new predictors: (a) the second version of the SSpro program for secondary structure classification into three categories and (b) the first version of the SSpro8 program for secondary structure classification into the eight classes produced by the DSSP program. We describe the results of three different test sets on which SSpro achieved a sustained performance of about 78% correct prediction. We report confusion matrices, compare PSI-BLAST to BLAST-derived profiles, and assess the corresponding performance improvements. SSpro and SSpro8 are implemented as web servers, available together with other structural feature predictors at: http://promoter.ics.uci.edu/BRNN-PRED/.  相似文献   

20.
Sadowski MI  Jones DT 《Proteins》2007,69(3):476-485
Comparative modeling is presently the most accurate method of protein structure prediction. Previous experiments have shown the selection of the correct template to be of paramount importance to the quality of the final model. We have derived a set of 732 targets for which a choice of ten or more templates exist with 30-80% sequence identity and used this set to compare a number of possible methods for template selection: BLAST, PSI-BLAST, profile-profile alignment, HHpred HMM-HMM comparison, global sequence alignment, and the use of a model quality assessment program (MQAP). In addition, we have investigated the question of whether any structurally defined subset of the sequence could be used to predict template quality better than overall sequence similarity. We find that template selection by BLAST is sufficient in 75% of cases but that there are examples in which improvement (global RMSD 0.5 A or more) could be made. No significant improvement is found for any of the more sophisticated sequence-based methods of template selection at high sequence identities. A subset of 118 targets extending to the lowest levels of sequence similarity was examined and the HHpred and MQAP methods were found to improve ranking when available templates had 35-40% maximum sequence identity. Structurally defined subsets in general are found to be less discriminative than overall sequence similarity, with the coil residue subset performing equivalently to sequence similarity. Finally, we demonstrate that if models are built and model quality is assessed in combination with the sequence-template sequence similarity that a extra 7% of "best" models can be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号