首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The calcium requirement for agonist-dependent breakdown of phosphatidylinositol and polyphosphoinositides has been examined in rat cerebral cortex. The omission of added Ca2+ from the incubation medium abolished [3H]inositol phosphate accumulation from prelabelled phospholipid induced by histamine, reduced that due to noradrenaline and 5-hydroxytryptamine, but did not affect carbachol-stimulated breakdown. EC50 values for agonists were unaltered in the absence of Ca2+. Removal of Ca2+ by preincubation with EGTA (0.5 mM) abolished all responses, but complete restoration was achieved by replacement of Ca2+. The EC50 for Ca2+ for histamine-stimulated [3H]inositol phosphate accumulation was 80 microM. Noradrenaline-stimulated breakdown was antagonised by manganese (IC50 1.7 mM), but not by the calcium channel blockers nitrendipine or nimodipine (30 microM). The calcium ionophore A23187 stimulated phosphatidylinositol/polyphosphoinositide hydrolysis with an EC50 of 2 microM, and this response was blocked by EGTA. Omission of Ca2+ or preincubation with EGTA or Mn2+ (EC50 = 230 microM) greatly enhanced the incorporation of [3H]inositol into phospholipids. The IC50 for Ca2+ in inhibiting incorporation was 25 microM. The results show that different receptors mediating phosphatidylinositol/polyphosphoinositide breakdown in rat cortex have quantitatively different Ca2+ requirements, and it is suggested that rigid opinions regarding phosphatidylinositol/polyphosphoinositide breakdown as either cause or effect of calcium mobilisation in rat cortex are inappropriate.  相似文献   

2.
Abstract: Exposure of rat brain or parotid gland slices to muscarinic receptor agonists stimulates a phospholipase C that degrades inositol phospholipids. When tissue slices were labelled in vitro with [3H]inositol, this response could be monitored by measuring the formation of [3H]inositol phosphates. Accumulation of inositol 1,4-biphosphate in stimulated brain slices suggests that polyphosphonositides are the primary targets for phospholipase C activity. Li+ (10 m M ) in the medium completely blocked the hydrolysis of inositol 1-phosphate, partially inhibited inositol 1,4bisphosphate hydrolysis, but had no effect on the hydrolysis of inositol 1,4,5-trisphosphate by endogenous phosphatases. Muscarinic receptor pharmacology was studied by measuring the accumulation of [3H]inositol 1-phosphate in the presence of 10 m M Li+. In experiments on brain slices, the response to carbachol was antagonised by atropine with an affinity constant of approximately 8.79 ± 0.12. Dose-response curves to several muscarinic agonists were constructed using brain and parotid gland slices. The results are consistent with relatively direct coupling of low-affinity muscarinic receptors to inositol phospholipid breakdown in brain slices; full agonists were relatively more potent in the parotid gland compared with the brain. Explanations for these differences are suggested.  相似文献   

3.
A pharmacological study was undertaken to determine whether the noradrenaline-stimulated breakdown of inositol phospholipids and the potentiation of isoprenaline-stimulated cyclic AMP by noradrenaline in rat cerebral cortex slices are mediated by the same alpha-receptor subtype. The rank order of potency of a range of alpha 1 and alpha 2 antagonists suggests that both responses may involve an alpha 1 receptor, but there were several differences between the pharmacological profiles for the two systems. Although in both cases, all selective alpha 1 antagonists were more potent than alpha 2 antagonists, the rank orders and the absolute potencies differed for the two responses. The inhibition of the inositol phosphate response was characterised by a high alpha 1/alpha 2 antagonist ratio, and in most cases, Hill slopes of inhibition were consistent with the involvement of a single receptor site. Inhibition of the cyclic AMP response had a much lower alpha 1/alpha 2 antagonist ratio and generally exhibited Hill slopes less than one. Evidence has been provided suggesting that adenosine is involved in the potentiation of cyclic AMP and that other, as yet unidentified, factors may also be involved. Even in the absence of an adenosine component, the results presented support the suggestion that the potentiation due to noradrenaline is mediated by a receptor whose identity does not easily fit with the currently accepted classification of alpha adrenoceptors.  相似文献   

4.
Histamine-stimulated accumulation of [3H]inositol monophosphate ([3H]IP1) in lithium-treated slices of rat cerebral cortex was inhibited by gamma-aminobutyric acid (GABA) (IC50 0.30 +/- 0.03 mM). The maximum level of inhibition was 69 +/- 2%. GABA alone caused a small stimulation of basal accumulation of [3H]IP1. The inhibitory action of GABA on the response to histamine was mimicked by the GABAB agonist (-)-baclofen, IC50 0.69 +/- 0.04 microM, which was 430-fold more potent as an inhibitor than the (+)-isomer. (-)-Baclofen also inhibited histamine-induced formation of [3H]inositol bisphosphate ([3H]IP2) and [3H] inositol trisphosphate ([3H]IP3). Inhibition curves for GABA and for (-)-and and (+)-baclofen had Hill coefficients greater than unity. (-)-Baclofen, at concentrations that caused inhibition of histamine-induced [3H]IP1 accumulation, did not alter the basal level of [3H]IP1 or the incorporation of [3H]inositol into total inositol phospholipids. Isoguvacine, a GABAA agonist, had no effect on either the histamine-stimulated or basal accumulation of [3H]IP1. GABA had no effect on carbachol-stimulated [3H]IP1 formation.  相似文献   

5.
The hippocampal vasopressin receptors have been characterised by measuring the stimulated accumulation of inositol monophosphate in the presence of 10 mM LiCl after hippocampal slices were prelabelled with [3H]inositol. Arginine-vasopressin caused a dose-dependent increase in inositol monophosphate accumulation (ED50 = 7.1 nM). The response was unchanged in the absence of Ca2+ and significantly reduced in the presence of a V1-receptor antagonist. Equimolar oxytocin was ineffective as a stimulus. This suggests that the hippocampal receptors are of the V1 type.  相似文献   

6.
The differential effects of muscarinic agents on inositol phospholipid hydrolysis and the role in this process of putative muscarinic receptor subtypes (M1 and M2) were investigated in three regions of guinea pig brain. Addition of the agonist oxotremorine-M to slices of neostriatum, cerebral cortex, or hippocampus incubated in the presence of myo-[2-3H]inositol and Li+ resulted in a large accumulation of labeled inositol phosphates (733, 376, and 330% of control, respectively). In each tissue, the principal product formed was myo-inositol 1-phosphate (59-86%), with smaller amounts of glycerophosphoinositol and inositol bisphosphate. Only trace amounts of inositol trisphosphate could be detected. Regional differences were observed in the capacity of certain partial agonists to evoke inositol lipid hydrolysis, the most notable being that of bethanechol, which was four times more effective in the neostriatum than in either the cerebral cortex or hippocampus. In addition, the full agonists, oxotremorine-M and carbamoylcholine, were more potent stimulators of inositol phosphate release in the neostriatum than in the cerebral cortex. The putative M1 selective agonist 4-m-chlorophenylcarbamoyloxy-2-butynyl trimethyl ammonium chloride had little stimulatory effect in any brain region, whereas the putative M1 selective antagonist pirenzepine blocked the enhanced release of inositol phosphates with high affinity in the cerebral cortex and hippocampus (Ki = 12.1 and 13.9 nM; "M1") but with a lower affinity in the neostriatum (Ki = 160 nM; "M2"). In contrast to its differential effects on stimulated inositol lipid hydrolysis, no regional differences were observed in the capacity of pirenzepine to displace [3H]quinuclidinyl benzilate, a muscarinic antagonist, bound to membrane fractions. Atropine, an antagonist that does not discriminate between receptor subtypes, inhibited the enhanced release of inositol phosphates with similar affinities in the three regions (Ki = 0.40-0.60 nM). The results indicate that by measurement of inositol lipid hydrolysis, regional differences in muscarinic receptor coupling characteristics become evident. These differences, which are not readily detected by radioligand binding techniques, might be accounted for by either the presence of functionally distinct receptor subtypes, or alternatively, by regional variations in the efficiency of muscarinic receptor coupling to inositol lipid hydrolysis.  相似文献   

7.
Noradrenaline-induced accumulation of 3H-labeled inositol mono-, bis-, and trisphosphate (IP1, IP2, and IP3, respectively) in lithium-treated slices of rat cerebral cortex preincubated with [3H]inositol was potentiated by gamma-aminobutyric acid (GABA). However, the effect on [3H]IP2 accumulation was much greater than that on [3H]IP1 or [3H]IP3 accumulation. The principal effect of GABA on noradrenaline concentration-response curves for both [3H]IP1 and [3H]IP2 was to cause an increase in the maximal response attainable. However, whereas the EC50 for GABA potentiation of [3H]IP1 formation was 0.5 mM, the curve for the potentiation of [3H]IP2 formation showed a marked upturn at GABA concentrations of greater than 1 mM. Prazosin (1 microM) blocked the noradrenaline-induced formation of all three inositol phosphates (IPs), in both the presence and the absence of 2 mM GABA. 3H-IP formation induced by phenylephrine and methoxamine was also potentiated by GABA, and again the greatest effect was on [3H]IP2 accumulation. The ratio of [3H]IP2/[3H]IP1 formed in response to 100 microM noradrenaline was increased by 2 mM GABA at all times from 10 to 60 min, whereas the ratio of [3H]IP3/[3H]IP1 was little altered. The effect of GABA was not mimicked by the GABAA agonists isoguvacine and 3-aminopropanesulphonic acid and was not blocked by bicuculline methiodide. (-)-Baclofen, a GABAB agonist, did produce some stimulation of the response to noradrenaline, but to a much lesser extent than GABA. Of the agents tested, nipecotic acid came nearest to reproducing the effect of GABA, in that the major effect was on [3H]IP2 accumulation. The effects of 2 mM GABA and 2 mM nipecotic acid were not additive. GABA potentiation of noradrenaline-induced 3H-IP formation was still apparent in the absence of Li+, but the increase of [3H]IP2 content was less than that of [3H]IP1 content.  相似文献   

8.
The in vitro effects of Li on agonist- and depolarization-stimulated accumulation of inositol phosphates were determined in mouse cerebral cortex slices. Of the agents examined, only the cholinergic agonist carbachol produced a significant accumulation of inositol tetrakisphosphate (InsP4) in the absence of Li. Lithium at 5 mM enhanced the accumulation of inositol monophosphate (InsP1) and inositol bisphosphate (InsP2) due to all the stimuli used and potentiated inositol trisphosphate (InsP3) accumulation due to histamine and noradrenaline, although at lower Li concentrations, carbachol-stimulated InsP3 accumulation was reduced. Li also enhanced InsP4 accumulation in the presence of noradrenaline, histamine, and elevated KCl level but, in marked contrast, reduced carbachol-stimulated InsP4 accumulation with an IC50 of 100 microM. There was a significant time delay between the initiation of carbachol stimulation and the beginning of the InsP4 inhibition due to Li. The phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate did not mimic the effects of Li. The results suggest that muscarinic receptor-mediated InsP4 production might be one of the targets for the therapeutic action of Li.  相似文献   

9.
The relationship between the density of the muscarinic receptor in developing rat cerebral cortex and its coupling to phosphoinositide turnover is examined. Tissue slices from rats of various ages were incubated with myo-[2-3H]inositol, and the effect of carbamoylcholine on the release of total inositol phosphates was determined. Binding of [3H]quinuclidinyl benzilate was determined in the same tissue. Although muscarinic receptor density in day-18 embryonic cortex was only 5% of that in the adult, the maximal response of stimulated phosphoinositide turnover to carbamoylcholine (1-10 mM) was at the adult level (i.e., three-fold increase). Comparison of the dependence of the turnover on carbamoylcholine concentration revealed that in neonates, the dose-response curve was shifted to the left, giving a half-maximal effect at concentrations approximately tenfold lower than that in the adult. In addition, the partial muscarinic agonists oxotremorine-2 and bethanechol were both more efficacious in young rats than in adults. The differences could not be accounted for either by alterations in agonist affinity for the receptor or by the presence of "spare" muscarinic receptors. These results indicate that muscarinic receptors in fetal and newborn rat cerebral cortex are more efficiently coupled to stimulation of phosphoinositide turnover than in the adult.  相似文献   

10.
The effects of adenosine on inositol phospholipid hydrolysis in mouse cerebrocortical slices were examined. Despite having no effect alone, adenosine and some structural analogues inhibited histamine-stimulated accumulation of inositol phosphates in a concentration-dependent manner. The responses to carbachol, noradrenaline, 5-hydroxytryptamine, and elevated KCl levels were unaffected. The effect of adenosine was on the maximal response to histamine rather than on its EC50. Several adenosine antagonists competitively blocked the inhibition due to adenosine. The results are discussed in relation to the previously reported enhancement of histamine-stimulated hydrolysis of inositol phospholipids in guinea pig brain.  相似文献   

11.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis.  相似文献   

12.
The density of [3H]prazosin binding to alpha 1-adrenoceptors in the rat cortex was measured after selective and mixed noradrenergic or dopaminergic lesions. DSP-4 produced a selective noradrenergic lesion and increased the density of alpha 1-adrenoceptors. 6-Hydroxydopamine produced a selective dopaminergic lesion (after desipramine protection of noradrenergic neurons) and a mixed noradrenergic and dopaminergic lesion that did not change the cortical alpha 1-adrenoceptor binding. On the basis of the results obtained, a hypothesis is put forward that the central dopaminergic system controls the denervation-induced cortical alpha 1-adrenoceptor up-regulation.  相似文献   

13.
Cerebral cortical slices from rat brain were incubated at 37 degrees C for 2 h in the presence of isoproterenol, noradrenaline, or adrenaline, and binding affinities and densities of adrenoceptor subtypes were subsequently examined in homogenized tissue. The density of alpha 2- and total beta-adrenoceptors was estimated using the radioligands [3H]rauwolscine and [3H]dihydroalprenolol (DHA), respectively. The percentages of beta 1- and beta 2-adrenoceptors were defined by inhibiting the binding of [3H]DHA with the beta 1-selective antagonist metoprolol. Exposure of slices to noradrenaline and adrenaline significantly decreased the maximal number of binding sites (Bmax) of alpha 2-adrenoceptors (48 and 37% respectively) without significantly affecting affinity; isoproterenol had no effect. Exposure to isoproterenol, noradrenaline, and adrenaline significantly decreased the Bmax of beta-adrenoceptors (by 60, 34, and 24%, respectively) but did not affect the affinity. Isoproterenol and adrenaline significantly decreased the density of beta 1-adrenoceptors by 75 and 24% and beta 2-adrenoceptors by 23 and 28%, respectively. Noradrenaline significantly decreased the density of beta 1-adrenoceptors by 42% without affecting the number of beta 2-adrenoceptors. These findings indicate that subtypes of adrenoceptors in rat cerebral cortex are differentially regulated by adrenergic agonists.  相似文献   

14.
Astrocyte-enriched cultures prepared from the newborn rat cortex incorporated [3H]myo-inositol into intracellular free inositol and inositol lipid pools. Noradrenaline and carbachol stimulated the turnover of these pools resulting in an increased accumulation of intracellular [3H]inositol phosphates. The effects of noradrenaline and carbachol were dose-dependent and blocked by specific alpha 1-adrenergic and muscarinic cholinergic receptor antagonists, respectively. The increase in [3H]inositol phosphate accumulation caused by these receptor antagonists was virtually unchanged when cultures were incubated in Ca2+-free medium, but was abolished when EGTA was also present in the Ca2+-free medium. Cultures of meningeal fibroblasts, the major cell type contaminating the astrocyte cultures, also accumulated [3H]myo-inositol, but no increased accumulation of [3H]inositol phosphates was found in response to either noradrenaline or carbachol.  相似文献   

15.
The accumulation of labelled inositol mono-, bis-, and trisphosphate in rat cerebral cortex slices was examined following preincubation with [3H]inositol. The muscarinic receptor agonist carbachol produced a rapid and sustained increased accumulation of each labelled inositol phosphate both in the presence and absence of 5 mM lithium. Lithium potentiated carbachol-stimulated accumulation of inositol monophosphate (EC50 0.5 mM) and inositol bisphosphate (EC50 4 mM) in a concentration-dependent manner. However, exposure to lithium in the presence of the muscarinic agonist produced a concentration- and time-dependent inhibition of inositol trisphosphate accumulation that was not related to receptor desensitisation. Although the present data do suggest that polyphosphoinositides are substrates for agonist-stimulated phospholipase C in brain, these results may not be entirely consistent with the production of inositol mono- and bisphosphate through inositol trisphosphate dephosphorylation. Furthermore, these data suggest site(s) additional to inositol monophosphatase that are affected by lithium.  相似文献   

16.
Abstract: The ability of receptors coupled to phosphoinositide turnover to evoke accumulation of inositol 1,4,5-trisphosphate (InsP3) over extended incubation periods, and consequently to affect the level of InsP3 receptor expression, was studied in cultured cerebellar granule cells. The cholinergic agonist carbachol (CCh; 1 m M ) evoked a biphasic accumulation of InsP3, a rapid three- to fourfold peak increase over control levels at ∼10 s, decreasing within 1 min to a long-lasting plateau elevation. Using an antibody against the type I InsP3 receptor, it was demonstrated that >50% down-regulation of type I InsP3 receptor expression in cerebellar granule cells occurred within 1 h of incubation with 1 m M CCh. Over 24 h, 1 m M CCh caused an ∼85% decrease in type I InsP3 receptor levels, and significant decreases in immunoreactivity were evident at much lower concentrations of CCh. Direct assessment of total InsP3 receptor expression using a radioligand binding method also detected down-regulation, but to an apparently lesser extent. 1-Aminocyclopentane-1 S ,3 R -dicarboxylic acid (200 µ M ), an agonist of metabotropic glutamate receptors, evoked a marked decrease in type I InsP3 receptors after 24 h of incubation. These findings demonstrate that a functional consequence of maintained InsP3 production in cerebellar granule cells is the down-regulation of InsP3 receptor expression and that this down-regulation may be a common mechanism of action of phosphoinositide-linked receptors during prolonged stimulation.  相似文献   

17.
Carbachol and norepinephrine were used as agonists to compare and contrast cholinergic and adrenergic stimulation of inositide breakdown in rat brain slices. Carbachol acts through a muscarinic (possibly M1) receptor and norepinephrine acts through an alpha 1 adrenoceptor. Studies in cerebral cortical slices indicated that both agonists stimulated the production of inositol-1-phosphate and glycerophosphoinositol. Although the initial rates for the stimulation of inositol phosphate release were similar for the two ligands, the response to norepinephrine continued for 60 min and was larger compared with carbachol which plateaued at 30 min. The presence of carbachol did not affect the ED50 for norepinephrine. Concentrations of carbachol near the ED50 in combination with norepinephrine resulted in an additive response whereas maximal concentrations of carbachol and norepinephrine resulted in a less than additive response in the cortex. This negative interaction was also seen in the hippocampus and hypothalamus but not in the striatum, brainstem, spinal cord, olfactory bulb, or cerebellum. Norepinephrine had a larger response than carbachol in the hippocampus, striatum, and spinal cord, but the reverse was true in the olfactory bulb. Manganese (1 mM) stimulated the incorporation of [3H]inositol into phosphatidylinositol (PtdIns) four- to fivefold but not into polyphosphoinositides. The stimulation by manganese of PtdIns labelling increased the nonstimulated release of inositol phosphates but did not affect the stimulated release of inositol phosphates by carbachol or norepinephrine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Increasing the [K+] in the assay medium from 5.7 to 17.8 mM produces a large enhancement of the inositol phospholipid breakdown response to the muscarinic agonist carbachol in rat cerebral cortical miniprisms, with minor effects on basal inositol phospholipid breakdown. This effect is also found with Rb+. The enhancement by a raised [K+] is not accompanied by a change in the composition of the labelled polyphosphoinositides. The carbachol-stimulated inositol phospholipid breakdown at 17.8 and 42.7 mM K+ was antagonised by veratrine (5-80 microM), 4-aminopyridine (5 mM), and tetraethylammonium (20 mM). These compounds, however, also inhibited the binding of [3H]quinuclidinyl benzilate to cortical membranes. BRL 34915 (0.2-20 microM) was without significant effect on carbachol-stimulated inositol phospholipid breakdown at either 5.7 or 17.8 mM K+.Mg2+ (10 mM) considerably reduced the carbachol-stimulated inositol phospholipid breakdown at 17.8, but not 42.7, mM K+. Inositol phospholipid breakdown was also stimulated, albeit to a small extent, by L-glutamate (100-3,000 microM) and quisqualate (1-100 microM), with the stimulation being additive to that produced by carbachol at both 5.7 and 17.8 mM K+. N-Methyl-D-aspartate (10-1,000 microM in Mg2+-free medium) had no significant effect on basal inositol phospholipid breakdown and had little or no effect on carbachol-stimulated inositol phospholipid breakdown at either 5.7 or 17.8 mM K+. It is concluded that it may not be correct to ascribe wholly the enhancement by K+ of carbachol-stimulated inositol phospholipid breakdown to the tissue-depolarising actions of this ion and that other actions of K+ may be involved.  相似文献   

19.
Depolarisation of [3H]inositol-prelabelled slices of rat cerebral cortex with elevated extracellular K+ induced a rapid and marked increase in inositol polyphosphate accumulation. Addition of the muscarinic antagonist atropine (10 microM) markedly inhibited the K+-induced accumulation of inositol tetrakisphosphate (InsP4), with only a slight reduction in stimulated inositol bis- and trisphosphate levels. Inhibitory effects on InsP4 were noted at the earliest time period measured (30 s) and suggested the involvement of released endogenous acetylcholine in part of the response. The atropine-insensitive component of depolarisation did not appear to be secondary to release of noradrenaline, histamine, or 5-hydroxytryptamine, because addition of prazosin, mepyramine, or ketanserin was without effect on the K+ response. Furthermore, secretion of a neuropeptide that could stimulate phosphoinositide hydrolysis was unlikely, because the peptidase inhibitor bacitracin was also without effect. The results suggest that endogenous acetylcholine can stimulate phosphoinositide metabolism by interacting with muscarinic receptors and that this is particularly evident on InsP4 accumulation. Atropine-insensitive responses may be secondary to Ca2+ entry via voltage-sensitive channels.  相似文献   

20.
The excitatory amino acid agonists kainate, N-methyl-D-aspartate (NMDA), and quisqualate inhibited ligand-stimulated phosphoinositide hydrolysis in rat cortical slices. The NMDA channel blocker MK-801 antagonized the inhibition by NMDA but had no effect on the inhibition due to kainate or quisqualate. The antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the effects of quisqualate and kainate but not the effect of NMDA. These data indicate that activation of the NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate types of ionotropic receptors has the same effect. In membranes prepared from cortical slices, there was no inhibition of carbachol-stimulated phosphoinositidase C activity by excitatory amino acids, suggesting that excitatory amino acids indirectly affect carbachol-stimulated phosphoinositide hydrolysis. The inhibition by excitatory amino acids of carbachol-stimulated phosphoinositide breakdown was dependent on extracellular Mg2+ and was abolished by procedures that increase intracellular Ca2+. Veratridine inhibition of carbachol-stimulated phosphoinositide hydrolysis was reversed by ouabain but not by other procedures that increase intracellular Ca2+. In contrast to excitatory amino acids, veratridine potentiated carbachol-stimulated phosphoinositide breakdown in the presence of 10 mM extracellular Mg2+. These data suggest that excitatory amino acids inhibit carbachol-stimulated phosphoinositide breakdown in rat cortex by lowering intracellular Ca2+ through a mechanism dependent on extracellular Mg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号