首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Desert ants of the genus Cataglyphis are skillful long‐distance navigators employing a variety of visual navigational tools such as skylight compasses and landmark guidance mechanisms. However, the time during which this navigational toolkit comes into play is extremely short, as the average lifetime of a Cataglyphis forager lasts for only about 6 days. Here we show, by using immunohistochemistry, confocal microscopy, and three‐dimensional reconstruction software, that even during this short period of adult life, Cataglyphis exhibits a remarkable increase in the size of its mushroom bodies, especially of the visual input region, the collar, if compared to age‐matched dark‐reared animals. This task‐related increase rides on a much smaller age‐dependent increase of the size of the mushroom bodies. Due to the variation in body size exhibited by Cataglyphis workers we use allometric analyses throughout and show that small animals exhibit considerably larger task‐related increases in the sizes of their mushroom bodies than larger animals do. It is as if there were an upper limit of mushroom body size required for accomplishing the ant's navigational tasks. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

2.
The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.  相似文献   

3.
Ants, like many other animals, use visual memory to follow extended routes through complex environments, but it is unknown how their small brains implement this capability. The mushroom body neuropils have been identified as a crucial memory circuit in the insect brain, but their function has mostly been explored for simple olfactory association tasks. We show that a spiking neural model of this circuit originally developed to describe fruitfly (Drosophila melanogaster) olfactory association, can also account for the ability of desert ants (Cataglyphis velox) to rapidly learn visual routes through complex natural environments. We further demonstrate that abstracting the key computational principles of this circuit, which include one-shot learning of sparse codes, enables the theoretical storage capacity of the ant mushroom body to be estimated at hundreds of independent images.  相似文献   

4.
Desert ants learn vibration and magnetic landmarks   总被引:1,自引:0,他引:1  
The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.  相似文献   

5.
The social brain hypothesis posits that the cognitive demands of social behaviour have driven evolutionary expansions in brain size in some vertebrate lineages. In insects, higher brain centres called mushroom bodies are enlarged and morphologically elaborate (having doubled, invaginated and subcompartmentalized calyces that receive visual input) in social species such as the ants, bees and wasps of the aculeate Hymenoptera, suggesting that the social brain hypothesis may also apply to invertebrate animals. In a quantitative and qualitative survey of mushroom body morphology across the Hymenoptera, we demonstrate that large, elaborate mushroom bodies arose concurrent with the acquisition of a parasitoid mode of life at the base of the Euhymenopteran (Orussioidea + Apocrita) lineage, approximately 90 Myr before the evolution of sociality in the Aculeata. Thus, sociality could not have driven mushroom body elaboration in the Hymenoptera. Rather, we propose that the cognitive demands of host-finding behaviour in parasitoids, particularly the capacity for associative and spatial learning, drove the acquisition of this evolutionarily novel mushroom body architecture. These neurobehavioural modifications may have served as pre-adaptations for central place foraging, a spatial learning-intensive behaviour that is widespread across the Aculeata and may have contributed to the multiple acquisitions of sociality in this taxon.  相似文献   

6.
To produce appropriate behaviors based on biologically relevant associations, sensory pathways conveying different modalities are integrated by higher-order central brain structures, such as insect mushroom bodies. To address this function of sensory integration, we characterized the structure and response of optic lobe (OL) neurons projecting to the calyces of the mushroom bodies in bees. Bees are well known for their visual learning and memory capabilities and their brains possess major direct visual input from the optic lobes to the mushroom bodies. To functionally characterize these visual inputs to the mushroom bodies, we recorded intracellularly from neurons in bumblebees (Apidae: Bombus impatiens) and a single neuron in a honeybee (Apidae: Apis mellifera) while presenting color and motion stimuli. All of the mushroom body input neurons were color sensitive while a subset was motion sensitive. Additionally, most of the mushroom body input neurons would respond to the first, but not to subsequent, presentations of repeated stimuli. In general, the medulla or lobula neurons projecting to the calyx signaled specific chromatic, temporal, and motion features of the visual world to the mushroom bodies, which included sensory information required for the biologically relevant associations bees form during foraging tasks.  相似文献   

7.
Desert ants (Cataglyphis fortis) navigate by a combination of path integration and landmark-based route memories. Their ability to correct sloped path segments to their ground distances enables them to orientate accurately even in undulating terrain. In this study, we tested whether or not ants incorporate vertical components of an itinerary into their route memory in similar ways as they do with visual landmarks and horizontal changes of direction. In two separate experiments, we trained desert ants to walk over artificial hills and later tested their acceptance of slopes within novel contexts. In the first paradigm, ants had to traverse a hill only on their outbound run, but not on their homebound trip. In a follow-up experiment, we confronted ramp-trained animals with descents in a completely new temporal and spatial context. The animals transferred their newly acquired acceptance of slopes from the outbound to the homebound run as well as to novel foraging trips. Cataglyphis obviously dissociates the experience of sloped path segments from the original context in which they appeared, thus reducing their significance as a navigational aid.  相似文献   

8.
9.
We examined the effects of behaviour, age and social environment on mushroom body volume in adult bees. The mushroom bodies are regions of the central brain important for sensory integration and learning. Their volume was influenced by behaviour throughout life: always larger in forager bees than age-matched nurse bees, even in old bees up to 93 days of age as adults. Mushroom body development was influenced by the social environment in the first 8 days of adult life, with different environments having markedly different effects on mushroom body size. Compared to hive-reared bees, isolation slowed mushroom body growth, but bees reared in isolation confined with a single dead bee showed a dramatic increase in mushroom body volume comparable to that seen in active foragers. Despite their precocious mushroom body development, these bees did not show improved performance in an olfactory learning test. Since simple environmental manipulations can both accelerate and delay mushroom body growth in young bees, and since mushroom body volume is sensitive to behaviour throughout life, the honey bee has great potential as a model for exploring the interactions between environment, behaviour and brain structure.  相似文献   

10.
The pattern of ocular dominance columns in primary visual cortex of mammals such as cats and macaque monkeys arises during development by the activity-dependent refinement of thalamocortical connections. Manipulating visual experience in kittens by the induction of squint leads to the emergence of ocular dominance columns with a larger size and larger column-to-column spacing than in normally raised animals. The mechanism underlying this phenomenon is presently unknown. Theory suggests that experience cannot influence the spacing of columns if the development proceeds through purely Hebbian mechanisms. Here we study a developmental model in which Hebbian mechanisms are complemented by activity-dependent regulation of the total strength of afferent synapses converging onto a cortical neurone. We show that this model implies an influence of visual experience on the spacing of ocular dominance columns and provides a conceptually simple explanation for the emergence of larger sized columns in squinting animals. Assuming that during development cortical neurones become active in local groups, which we call co-activated cortical domains (CCDs), ocular dominance segregation is controlled by the size of these groups: (1) Size and spacing of ocular dominance columns are proportional to the size sigma of CCDs. (2) There is a critical size sigma* of CCDs such that ocular dominance columns form if sigmasigma*. This critical size of CCDs is determined by the correlation functions of activity patterns in the two eyes and specifies the influence of experience on ocular dominance segregation. We show that sigma* is larger with squint than with normal visual experience. Since experimental evidence indicates that the size of CCDs decreases during development, ocular dominance columns are predicted to form earlier and with a larger spacing in squinters compared to normal animals.  相似文献   

11.
Serotonin, a biogenic amine known to be a neuromodulator of insect behavior, has recently been associated with age-related patterns of task performance in the ant Pheidole dentata. We identified worker age- and subcaste-related patterns of serotonergic activity within the optic lobes of the P. dentata brain to further examine its relationship to polyethism. We found strong immunoreactivity in the optic lobes of the brains of both minor and major workers. Serotonergic cell bodies in the optic lobes increased significantly in number as major and minor workers matured. Old major workers had greater numbers of serotonergic cell bodies than minors of a similar age. This age-related increase in serotonergic immunoreactivity, as well as the presence of diffuse serotonin networks in the mushroom bodies, antennal lobes, and central complex, occurs concomitantly with an increase in the size of worker task repertoires. Our results suggest that serotonin is associated with the development of the visual system, enabling the detection of task-related stimuli outside the nest, thus playing a significant role in worker behavioral development and colony-wide division of labor.  相似文献   

12.
Balkenius A  Hansson B 《PloS one》2012,7(4):e32133

Background

The mushroom bodies of the insect brain play an important role in olfactory processing, associative learning and memory. The mushroom bodies show odor-specific spatial patterns of activity and are also influenced by visual stimuli.

Methodology/Principal Findings

Functional imaging was used to investigate changes in the in vivo responses of the mushroom body of the hawkmoth Manduca sexta during multimodal discrimination training. A visual and an odour stimulus were presented either together or individually. Initially, mushroom body activation patterns were identical to the odour stimulus and the multimodal stimulus. After training, however, the mushroom body response to the rewarded multimodal stimulus was significantly lower than the response to the unrewarded unimodal odour stimulus, indicating that the coding of the stimuli had changed as a result of training. The opposite pattern was seen when only the unimodal odour stimulus was rewarded. In this case, the mushroom body was more strongly activated by the multimodal stimuli after training. When no stimuli were rewarded, the mushroom body activity decreased for both the multimodal and unimodal odour stimuli. There was no measurable response to the unimodal visual stimulus in any of the experiments. These results can be explained using a connectionist model where the mushroom body is assumed to be excited by olfactory stimulus components, and suppressed by multimodal configurations.

Conclusions

Discrimination training with multimodal stimuli consisting of visual and odour cues leads to stimulus specific changes in the in vivo responses of the mushroom body of the hawkmoth.  相似文献   

13.
Jumping spiders are known for their extraordinary cognitive abilities. The underlying nervous system structures, however, are largely unknown. Here, we explore and describe the anatomy of the brain in the jumping spider Marpissa muscosa (Clerck, 1757) by means of paraffin histology, X-ray microCT analysis and immunohistochemistry as well as three-dimensional reconstruction. In the prosoma, the CNS is a clearly demarcated mass that surrounds the esophagus. The anteriormost neuromere, the protocerebrum, comprises nine bilaterally paired neuropils, including the mushroom bodies and one unpaired midline neuropil, the arcuate body. Further ventrally, the synganglion comprises the cheliceral (deutocerebrum) and pedipalpal neuropils (tritocerebrum). Synapsin-immunoreactivity in all neuropils is generally strong, while allatostatin-immunoreactivity is mostly present in association with the arcuate body and the stomodeal bridge. The most prominent neuropils in the spider brain, the mushroom bodies and the arcuate body, were suggested to be higher integrating centers of the arthropod brain. The mushroom body in M. muscosa is connected to first and second order visual neuropils of the lateral eyes, and the arcuate body to the second order neuropils of the anterior median eyes (primary eyes) through a visual tract. The connection of both, visual neuropils and eyes and arcuate body, as well as their large size corroborates the hypothesis that these neuropils play an important role in cognition and locomotion control of jumping spiders. In addition, we show that the architecture of the brain of M. muscosa and some previously investigated salticids differs significantly from that of the wandering spider Cupiennius salei, especially with regard to structure and arrangement of visual neuropils and mushroom body. Thus, we need to explore the anatomical conformities and specificities of the brains of different spider taxa in order to understand evolutionary transformations of the arthropod brain.  相似文献   

14.
The behavioral maturation of adult worker honey bees is influenced by a rising titer of juvenile hormone (JH), and is temporally correlated with an increase in the volume of the neuropil of the mushroom bodies, a brain region involved in learning and memory. We explored the stability of this neuropil expansion and its possible dependence on JH. We studied the volume of the mushroom bodies in adult bees deprived of JH by surgical removal of the source glands, the corpora allata. We also asked if the neuropil expansion detected in foragers persists when bees no longer engage in foraging, either because of the onset of winter or because colony social structure was experimentally manipulated to cause some bees to revert from foraging to tending brood (nursing). Results show that adult exposure to JH is not necessary for growth of the mushroom body neuropil, and that the volume of the mushroom body neuropil in adult bees is not reduced if foraging stops. These results are interpreted in the context of a qualitative model that posits that mushroom body neuropil volume enlargement in the honey bee has both experience-independent and experience-dependent components.  相似文献   

15.
The purpose of this study was to examine the mitogenic effects of 20-hydroxyecdysone on neurogenesis in mushroom bodies of the adult cockroach, Diploptera punctata. The occurrence of neurogenesis was studied immunocytochemically after in vivo labeling with 5-bromo-2'-deoxyuridine (BrdU). The number of BrdU-labeled cells in the mushroom bodies was high shortly after adult ecdysis, then gradually decreased, and proliferation ceased on day 8. 20-Hydroxyecdysone injection during the early adult stages significantly delayed the decrease in mitotic activity. Moreover, 20-hydroxyecdysone injection during the late stage stimulated quiescent mushroom body neuroblasts to initiate their mitotic activity in a dose-dependent manner. These results indicated that the mushroom body neuroblasts of this insect become quiescent in the maturing central nervous system, but retain the capacity for proliferation if exposed to appropriate environmental signals. We conclude that 20-hydroxyecdysone has a mitogenic effect on neurogenesis in mushroom bodies of this insect.  相似文献   

16.
Brain investment is evolutionarily constrained by high costs of neural tissue. Several ecological factors favour the evolution of increased brain investment; we predict reduced brain region investment will accompany the evolution of organismal or social parasitism when parasites rely on host behaviour and cognition to solve ecological problems. To test this idea we investigated whether brain region investments differed between obligate slave‐making Polyergus mexicanus ant workers and their Formica fusca slave workers. Polyergus workers perform little labour for their colonies; enslaved workers of Formica host species forage, excavate nests and tend the brood. We focused on the calyces of the mushroom bodies, central processing brain regions that are larger in social insect workers that perform complex tasks. As predicted we found lower relative investment in mushroom body calyx in P. mexicanus workers than in F. fusca workers; by contrast, enslaved and free F. fusca workers did not differ in mushroom body calyx volume. We then tested whether slave‐makers and hosts differed in brain investment among sensory modalities. Polyergus slave‐makers employ several unique classes of pheromones during raids, and eye size relative to head size was smaller in P. mexicanus workers than in F. fusca workers. The size of antennal brain tissues relative to visual tissues was greater in Polyergus, both in the peripheral sensory lobes and in the mushroom body calyx, suggesting greater relative investment in antennal processing by slave‐makers. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 415–422.  相似文献   

17.
18.
The purpose of this study was to examine the mitogenic effects of 20‐hydroxyecdysone on neurogenesis in mushroom bodies of the adult cockroach, Diploptera punctata. The occurrence of neurogenesis was studied immunocytochemically after in vivo labeling with 5‐bromo‐2′‐deoxyuridine (BrdU). The number of BrdU‐labeled cells in the mushroom bodies was high shortly after adult ecdysis, then gradually decreased, and proliferation ceased on day 8. 20‐Hydroxyecdysone injection during the early adult stages significantly delayed the decrease in mitotic activity. Moreover, 20‐hydroxyecdysone injection during the late stage stimulated quiescent mushroom body neuroblasts to initiate their mitotic activity in a dose‐dependent manner. These results indicated that the mushroom body neuroblasts of this insect become quiescent in the maturing central nervous system, but retain the capacity for proliferation if exposed to appropriate environmental signals. We conclude that 20‐hydroxyecdysone has a mitogenic effect on neurogenesis in mushroom bodies of this insect. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 264–274, 1999  相似文献   

19.
The desert ant Cataglyphis fortis is equipped with sophisticated navigational skills for returning to its nest after foraging. The ant's primary means for long-distance navigation is path integration, which provides a continuous readout of the ant's approximate distance and direction from the nest. The nest is pinpointed with the aid of visual and olfactory landmarks. Similar landmark cues help ants locate familiar food sites. Ants on their outward trip will position themselves so that they can move upwind using odor cues to find food. Here we show that homing ants also move upwind along nest-derived odor plumes to approach their nest. The ants only respond to odor plumes if the state of their path integrator tells them that they are near the nest. This influence of path integration is important because we could experimentally provoke ants to follow odor plumes from a foreign, conspecific nest and enter that nest. We identified CO(2) as one nest-plume component that can by itself induce plume following in homing ants. Taken together, the results suggest that path-integration information enables ants to avoid entering the wrong nest, where they would inevitably be killed by resident ants.  相似文献   

20.
Division of labor among workers is a key feature of social insects and frequently characterized by an age‐related transition between tasks, which is accompanied by considerable structural changes in higher brain centers. Bumble bees (Bombus terrestris), in contrast, exhibit a size‐related rather than an age‐related task allocation, and thus workers may already start foraging at two days of age. We ask how this early behavioral maturation and distinct size variation are represented at the neuronal level and focused our analysis on the mushroom bodies (MBs), brain centers associated with sensory integration, learning and memory. To test for structural neuronal changes related to age, light exposure, and body size, whole‐mount brains of age‐marked workers were dissected for synapsin immunolabeling. MB calyx volumes, densities, and absolute numbers of olfactory and visual projection neuron (PN) boutons were determined by confocal laser scanning microscopy and three‐dimensional image analyses. Dark‐reared bumble bee workers showed an early age‐related volume increase in olfactory and visual calyx subcompartments together with a decrease in PN‐bouton density during the first three days of adult life. A 12:12  h light‐dark cycle did not affect structural organization of the MB calyces compared to dark‐reared individuals. MB calyx volumes and bouton numbers positively correlated with body size, whereas bouton density was lower in larger workers. We conclude that, in comparison to the closely related honey bees, neuronal maturation in bumble bees is completed at a much earlier stage, suggesting a strong correlation between neuronal maturation time and lifestyle in both species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号