首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogen-activated protein (MAP) kinases mediate cellular responses to a wide variety of stimuli. Activation of a MAP kinase (MAPK) occurs after phosphorylation by an upstream MAP kinase kinase (MAPKK). The Arabidopsis thaliana genome encodes 10 MKKs, but few of these have been shown directly to activate any of the 20 Arabidopsis MAPKs (AtMPKs) and NaCl-, drought- or abscisic acid (ABA)-induced genes RD29A or RD29B. We have constructed the constitutively activated form for nine of the 10 AtMKK proteins, and tested their ability to activate the RD29A and RD29B promoters and also checked the ability of the nine activated AtMKK proteins to phosphorylate 11 of the AtMPK proteins in transient assays. The results show that three proteins, AtMKK1, AtMKK2 and AtMKK3, could activate the RD29A promoter, while these three and two additional AtMKK6/8 proteins could activate the RD29B promoter. Four other proteins, AtMKK7/AtMKK9 and AtMKK4/AtMKK5, can cause hypersensitive response (HR) in tobacco leaves using transient analysis. The activation of the RD29A promoter correlated with four uniquely activated AtMPK proteins. A novel method of activating AtMPK proteins by fusion to a cis-acting mutant of a human MAPK kinase MEK1 was used to confirm that specific members of the AtMPK gene family can activate the RD29A stress pathway.  相似文献   

2.
Mitogen-activated protein kinase (MAPK) pathways represent a crucial regulatory mechanism in plant development. The ability to activate and inactivate MAPK pathways rapidly in response to changing conditions helps plants to adapt to a changing environment. AtMKK1 is a stress response kinase that is capable of activating the MAPK proteins AtMPK3, AtMPK4 and AtMPK6. To elucidate its mode of action further, several tests were undertaken to examine the response of AtMKK1 to salt stress using a knockout (KO) mutant of AtMKK1. We found that AtMKK1 mutant plants tolerated elevated levels of salt during both germination and adulthood. Proteomic analysis indicated that the level of the α subunit of mitochrondrial H+-ATPase, mitochrondial NADH dehydrogenase and mitochrondrial formate dehydrogenase was enhanced in AtMKK1 knockout mutants upon high salinity stress. The level of formate dehydrogenase was further confirmed by immunoblotting and enzyme assay. The possible involvement of these enzymes in salt tolerance is discussed.  相似文献   

3.
Abscisic acid (ABA) and sugars have been well established to be crucial factors controlling seed germination of Arabidopsis. Here we demonstrate that AtMKK1 and AtMPK6 are both critical signals involved in ABA and sugar-regulated seed germination. Wild type plants depended on stratification and after-ripening for seed germination, whereas this dependence on either stratification or after-ripening was not required for mutants of mkk1 and mpk6 as well as their double mutant mkk1 mpk6. While seed germination of wild type plants was sensitively inhibited by ABA and glucose, mkk1, mpk6 and mkk1 mpk6 were all strongly resistant to ABA or glucose treatments, and in contrast, plants overexpressing MKK1 or MPK6 were super-sensitive to ABA and glucose. Glucose treatment significantly induced increases in MKK1 and MPK6 activities. These results clearly indicate that MKK1 and MPK6 are involved in the ABA and sugar signaling in the process of seed germination. Further experiments showed that glucose was capable of inducing ABA biosynthesis by up-regulating NCED3 and ABA2, and furthermore, this up-regulation of NCED3 and ABA2 was arrested in the mkk1 mpk6 double mutant, indicating that the inhibition of seed germination by glucose is potentially resulted from sugar-induced up-regulation of the ABA level. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
6.
7.
Molecular aspects of mechanical stress-induced cardiac hypertrophy   总被引:1,自引:0,他引:1  
To elucidate the signal transduction pathway from external stimuli to nuclear gene expression in mechanical stress-induced cardiac hypertrophy, we examined the time course of activation of protein kinases such as Raf-1 kinase (Raf-1), mitogen-activated protein kinase kinase (MAPKK), MAP kinases (MAPKs) and 90-kDa ribosomal S6 kinase (p90rsk) in neonatal rat cardiomyocytes. Mechanical stretch rapidly activated Raf-1 and its maximal activation was observed at 1–2 min after stretch. The activity of MAPKK was also increased by stretch, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10–30 min after stretch, respectively. Next, the relationship between mechanical stress-induced hypertrophy and the cardiac renin-angiotensin system was investigated. When the stretch-conditioned culture medium was transferred to the culture dish of non-stretched cardiac myocytes, the medium activated MAPK activity slightly but significantly, and the activation was completely blocked by the type 1 angiotensin II receptor antagonist, CV-11974. However, activation of Raf-1 and MAPKs provoked by stretching cardiomyocytes was only partially suppressed by pretreatment with CV-11974. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1, MAPKK, MAPKs and p90rsk, and that angiotensin II, which is secreted from stretched myocytes, activates a part of these protein kinases.Abbreviations MAPK mitogen-activated protein kinase - MAPKK MAP kinase kinase - Raf-1 - Raf- 1 kinase p90rsk, 90 kDa ribosomal S6 kinase; AngII - angiotensin II - MAPKKK MAP kinase kinase kinase - rMAPK recombinant MAPKK fused to gluthathione S transferase - MMAKK recombinant MAPK fused to maltose binding protein - MBP myelin basic protein - ACE angiotensin-converting enzyme  相似文献   

8.
Wada S  Watanabe T 《Genetica》2007,131(3):307-314
Mitogen-activated protein (MAP) kinases, a closely related family of protein kinases, are involved in cell cycle regulation and differentiation in yeast and human cells. They have not been documented in ciliates. We used PCR to amplify DNA sequences of a ciliated protozoan—Paramecium caudatum—using primers corresponding to amino acid sequences that are common to MAP kinases. We isolated and sequenced one putative MAP kinase-like serine/threonine kinase cDNA from P. caudatum. This cDNA, called pcstk1 (Paramecium caudatum Serine/Threonine Kinase 1) shared approximately 35% amino acid identity with MAP kinases from yeast. MAP kinases are activated by phosphorylation of specific threonine and tyrosine residues. These two amino acid residues are conserved in the PCSTK1 sequence at positions Thr 159 and Tyr 161. The PSTAIRE motif, which is characteristic of the CDK2 gene family, cannot be found in ORF of PCSTK1. The highest homology score was to human STK9, which contains MAP type kinase domains. Comparisons of expression level have shown that pcstk1 is expressed equally in cells at different stages (sexual and asexual). We discussed the possibility, as in other organisms, that a family of MAP kinase genes exists in P. caudatum.  相似文献   

9.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   

10.
The mitogen-activated protein (MAP) kinase cascades are important signaling components that mediate various biological pathways in all eukaryotic cells. In our recent publication,1 we identified AtMPK4 as one of the downstream targets of AtMKK6 that is required for executing male-specific meiotic cytokinesis. Here we provide evidence that another target, AtMPK13, is developmentally co-expressed with AtMKK6 in Arabidopsis, and both AtMPK13 and AtMKK6 display high Promoter::GUS activity in the primary root tips and at the lateral root primordia. Partial suppression of either AtMKK6 or AtMPK13 expression significantly reduces the number of lateral roots in the transgenic lines, suggesting that the AtMKK6-AtMPK13 module positively regulates lateral root formation.Key words: MAP kinase modules, lateral root, RNAi, developmental specificity, pericycle  相似文献   

11.
Phosphorylation of substrate proteins by mitogen-activated protein kinases (MPKs) determines the specific cellular responses elicited by a particular extracellular stimulus. However, downstream targets of plant MPKs remain poorly characterized. In this study, 29 putative substrates of AtMPK3, AtMPK4 and AtMPK6 were identified by solid-phase phosphorylation screening of a λ phage expression library constructed from combined mRNAs from salt-treated, pathogen-treated and mechanically wounded Arabidopsis seedlings. To test the efficiency of this screening, we performed in vitro kinase assay with 10 recombinant fusion proteins. All proteins were phosphorylated by AtMPK3, AtMPK4 and AtMPK6, indicating the efficiency of this screening procedure. To confirm phosphorylation of isolated substrates by plant MPKs, we performed in-gel kinase assays. All test substrates were strongly phosphorylated by wounding or H2O2-activated AtMPK3 and AtMPK6. Three substrates, encoded by genes At2g41430, At2g41900, and At3g16770, were strongly phosphorylated, suggesting a function as AtMPK substrates. The type of screening provides a powerful way for identifying potential substrates of MAP kinases responsive to biotic and abiotic stresses.  相似文献   

12.
Mitogen‐activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single‐mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double‐mutants are created from a large library of single‐mutant lines. Here we describe a new collection of 275 double‐mutant lines derived from a library of single‐mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high‐throughput double‐mutant generating pipeline using a system for growing Arabidopsis seedlings in 96‐well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double‐mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single‐mutant line. Seeds for this double‐mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double‐mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling.  相似文献   

13.
Summry— Numerous studies have been published these last few years on the involvement of MAP kinases in signal transduction reflecting their importance in cell cycle and cell growth controls. The identification and the characterization of their direct upstream activator has considerably enlarged our understanding of the phosphorylation network. The MAP kinase kinases (MAPKKs) are dual-specificity protein kinases which phosphorylate and activate MAP kinases. To date, MAPKK homologues have been found in yeast, invertebrates, amphibians, and mammals. Moreover, the MAPKK/MAPK phosphorylation switch constitutes a basic module activated in distinct pathways in yeast and in vertebrates. MAPKK regulation studies have led to the discovery of at least four MAPKK convergent pathways in higher organisms. One of these is similar to the yeast pheromone response pathway which includes the ste11 protein kinase. Two other pathways require the activation of either one or both of the serine/threonine kinase-encoded oncogenes c-Raf-I and c-Mos. Additionally, recent studies suggest a possible effect of the cell cycle control regulatory cyclin-dependent kinase 1 (cdc2) on MAPKK activity. Finally, MAPKKs seem to be essential transducers through which signals must pass before reaching the nucleus.  相似文献   

14.
The cdc2 kinases are important cell cycle regulators in all eukaryotes. MAP kinases, a closely related family of protein kinases, are involved in cell cycle regulation in yeasts and vertebrates, but previously have not been documented in plants. We used PCR to amplify Brassica napus DNA sequences using primers corresponding to amino sequences that are common to all known protein kinases. One sequence was highly similar to KSS1, a MAP kinase from Saccharomyces cerevisiae. This sequence was used to isolate a full-length MAP kinase-like clone from a pea cDNA library. The pea clone, called D5, shared approximately 50% amino acid identity with MAP kinases from yeasts and vertebrates and about 41% identity with plant cdc2 kinases. An expression protein encoded by D5 was recognized by an antiserum specific to human MAP kinases (ERKs). Messenger RNA corresponding to D5 was present at similar levels in all tissues examined, without regard to whether cell division or elongation were occurring in those tissues.  相似文献   

15.
Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis   总被引:1,自引:0,他引:1  
Mitogen-activated protein kinase (MAPK) cascades play an important role in mediating stress responses in plants. In Arabidopsis, 20 MAPKs have been identified and classified into four major groups (A-D). Little is known about the role of group C MAPKs. We have studied the activation of Arabidopsis subgroup C1 MAPKs (AtMPK1/AtMPK2) in response to mechanical injury. An increase in their kinase activity was detected in response to wounding that was blocked by cycloheximide. Jasmonic acid (JA) activated AtMPK1/AtMPK2 in the absence of wounding. Wound and JA-induction of AtMPK1/2 kinase activity was not prevented in the JA-insensitive coi1 mutant. Other stress signals, such as abscisic acid (ABA) and hydrogen peroxide, activated AtMPK1/2. This report shows for the first time that regulation of AtMPK1/2 kinase activity in Arabidopsis might be under the control of signals involved in different kinds of stress.  相似文献   

16.
Mitogen-activated protein kinase (MAPK) cascades have been implicated in regulating various aspects of plant development, including somatic cytokinesis. The evolution of expanded plant MAPK gene families has enabled the diversification of potential MAPK cascades, but functionally overlapping components are also well documented. Here we report that Arabidopsis MPK4, an MAPK that was previously described as a regulator of disease resistance, can interact with and be phosphorylated by the cytokinesis-related MAP kinase kinase, AtMKK6. In mpk4 mutant plants, anthers can develop normal microspore mother cells (MMCs) and peripheral supporting tissues, but the MMCs fail to form a normal intersporal callose wall after male meiosis, and thus cannot complete meiotic cytokinesis. Nevertheless, the multinucleate mpk4 microspores subsequently proceed through mitotic cytokinesis, resulting in enlarged mature pollen grains that possess increased sets of the tricellular structure. This pollen development phenotype is reminiscent of those observed in both atnack2/tes/stud and anq1/mkk6 mutants, and protein-protein interaction analysis defines a putative signalling module linking AtNACK2/TES/STUD, AtANP3, AtMKK6 and AtMPK4 together as a cascade that facilitates male-specific meiotic cytokinesis in Arabidopsis.  相似文献   

17.
18.
Previous analysis of the MAP kinase homologue from Pisum sativum (PsMAPK) revealed a potential MAP kinase motif homologous to that found in eukaryotic cdc2 kinases. Sequence comparison showed a 47% identity on amino acid sequence basis to the Saccharomyces cerevisiae Hog 1p MAP kinase involved in the osmoregulatory pathway. Under conditions of salt-stress aberrant morphology of a hog1 deletion mutant was completely restored and growth was partially restored by expression of the PsMAPK. This shows that PsMAPK is functionally active as a MAP kinase in S. cerevisiae. Comparison of PsMAPK with other kinases involved in osmosensitivity, showed a high degree of homology and implicates a possible role for PsMAPK in a P. sativum osmosensing signal transduction pathway.  相似文献   

19.
The HST7 gene of Candida albicans encodes a protein with structural similarity to MAP kinase kinases. Expression of this gene in Saccharomyces cerevisiae complements disruption of the Ste7 MAP kinase kinase required for both mating in haploid cells and pseudohyphal growth in diploids. However, Hst7 expression does not complement loss of either the Pbs2 (Hog4) MAP kinase kinase required for response to high osmolarity, or loss of the Mkk1 and Mkk2 MAP kinase kinases required for proper cell wall biosynthesis. Intriguingly, HST7 acts as a hyperactive allele of STE7; expression of Hst7 activates the mating pathway even in the absence of upstream signaling components including the Ste7 regulator Ste11, elevates the basal level of the pheromone-inducible FUS1 gene, and amplifies the pseudohyphal growth response in diploid cells. Thus Hst7 appears to be at least partially independent of upstream activators or regulators, but selective in its activity on downstream target MAP kinases. Creation of Hst7/Ste7 hybrid proteins revealed that the C-terminal two-thirds of Hst7, which contains the protein kinase domain, is sufficient to confer this partial independence of upstream activators.Communicated by C. P. Hollenberg  相似文献   

20.
Phosphoinositides (PIs) are essential metabolites which are generated by various lipid kinases and rapidly respond to a variety of environmental stimuli in eukaryotes. One of the precursors of important regulatory PIs, phosphatidylinositol (PtdIn) 4‐phosphate, is synthesized by PtdIns 4‐kinases (PI4K). Despite its wide distribution in eukaryotes, its role in plants remains largely unknown. Here, we show that the activity of AtPI4Kγ3 gene, an Arabidopsis (Arabidopsis thaliana) type II PtdIn 4‐kinase, is regulated by DNA demethylation and some abiotic stresses. AtPI4Kγ3 is targeted to the nucleus and selectively bounds to a few PtdIns. It possessed autophosphorylation activity but unexpectedly had no detectable lipid kinase activity. Overexpression of AtPI4Kγ3 revealed enhanced tolerance to high salinity or ABA along with inducible expression of a host of stress‐responsive genes and an optimal accumulation of reactive oxygen species. Furthermore, overexpressed AtPI4Kγ3 augmented the salt tolerance of bzip60 mutants. The ubiquitin‐like domain of AtPI4Kγ3 is demonstrated to be essential for salt stress tolerance. Besides, AtPI4Kγ3‐overexpressed plants showed a late‐flowering phenotype, which was caused by the regulation of some flowering pathway integrators. In all, our results indicate that AtPI4Kγ3 is necessary for reinforcement of plant response to abiotic stresses and delay of the floral transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号