首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以三年生可开花结果的盆栽松风本龙眼为试材,研究镉处理后龙眼体内镉含量变化及植株生长效应。结果表明,龙眼吸收的镉,大部分停留在根内,少量向地上的叶和果转移,各器官镉的含量依次为根> 叶> 果。龙眼对镉具有较强的耐性,即使土壤外加镉量达400 mg/kg,其植株外观也未出现明显的毒害症状,但果的镉含量已严重超标。  相似文献   

2.
Seed germination is tolerant to heavy metals apparently because the seed coat is impermeable to metal ions. However, it is not clear whether the seed coat is a universal barrier for all metals. In addition, depending on their physical and chemical properties, a distribution of various metals may differ within an imbibing caryopsis, and therefore they produce dissimilar effects on seed germination. The toxic effects of Cd(NO3)2, Pb(NO3)2, Ni(NO3)2, and Sr(NO3)2 were estimated from the germination rates of maize (Zea mays L.) caryopses following two-day incubation with these salts. The distribution of heavy metals and Sr was studied by histochemical methods based on the formation of colored complexes with dithizone (Cd and Pb), dimethylglyoxyme (Ni), and sodium rhodizonate (Sr). Although the metals under study did not affect maize radicle protrusion, they inhibited seed germination in the following order: Cd > Ni ≈ Pb > Sr. Cd and Pb accumulated mainly in the seed coat cells, but Sr and Ni in the embryo cells and in the cells of endosperm (Sr) and scutellum (Ni). Although Cd was found only in the seed coat, it was the strongest inhibitor of seed germination. Apparently, due to high toxicity, Cd exerted its inhibitory effect at the concentrations too low for histochemical assay. In spite of easy translocation across the seed coat of imbibing caryopses, Sr did not considerably inhibit radicle protrusion and seed germination, apparently because of its low toxicity and predominant localization in the apoplast of embryo and endosperm cells.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 635–640.Original Russian Text Copyright © 2005 by Seregin, Kozhevnikova.  相似文献   

3.
The objective of this study was to evaluate the effect of glutamate (Glu) and citrate (Cit) on the absorption and distribution of aluminum in rats. In the in vitro experiment, 18 adult male Sprague-Dawley rats (average weight of 250 ± 15 g) were randomly divided into three groups. The entire intestine was rapidly removed and cultured in prediction samples of 20 mmol AlCl(3), 20 mmol AlCl(3)+20 mmol Cit, and 20 mmol AlCl(3)+20 mmol Glu, respectively. Liquid in different intestines and the intestines were obtained for Al determination. In the in vivo chronic study, 24 adult male Sprague-Dawley rats (average weight of 127 ± 10 g) were divided into four groups fed with the following diets: no Al and Glu added (control), AlCl(3) (1.2 mmol), AlCl(3) (1.2 mmol) + Cit (1.2 mmol), and AlCl(3) (1.2 mmol) + Glu (1.2 mmol) daily for 50 days, respectively. After rat sacrifice, blood samples were obtained for biochemical analyses, and organ samples like the brain, kidney, liver, and bone were rapidly taken for Al determination. The results showed that the absorption rate of Al with the following order: duodenum > jejunum > ileum in the in vitro study and the administration of AlCl(3)+Cit or AlCl(3)+Glu resulted in significant increases in Al absorption in the three parts of the gut (duodenum, jejunum, and ileum) compared to the AlCl(3) alone group based on wet weight (P < 0.05). There were no differences between the AlCl(3)+Cit and AlCl(3)+Glu groups. In the in vivo chronic study, supplementing either AlCl(3) alone or AlCl(3)+Glu decreased food consumption significantly (P < 0.05) compared with the control group. Compared with the control group, animals fed with the AlCl(3) diet monitored for red blood cell, kidney, and liver showed a higher level (P < 0.05), but did not significantly increase Al retention in the brain and bone (P > 0.05); animals fed with AlCl(3)+Cit diets were monitored for higher Al retention in the brain, kidney, bone, and liver (P < 0.05), while animals fed with AlCl(3)+Glu diets were monitored for red blood cell, brain, and kidney (P < 0.05). Compared with the AlCl(3) group, simultaneous administration of AlCl(3) and Glu led to a significant increase in Al retention in red blood cell, brain, and kidney (P < 0.01) while AlCl(3) and Cit in the kidney and bone (P < 0.01). Simultaneous administration of AlCl(3) and Cit significantly increases plasma malondialdehyde level (P < 0.05); both simultaneous administration of AlCl(3) and Glu or AlCl(3) and Cit led to significant decreases in superoxide dismutase level in the plasma (P < 0.05), while AlCl3 alone did not. The results indicated that both Cit and Glu enhanced Al absorption in the intestine in vitro, and Glu increased Al deposition in red blood cell, brain, and kidney in vivo.  相似文献   

4.
In this study, the modulation of aflatoxin B1 (AFB1) uptake in rats by administration of the probiotic Lactobacillus rhamnosus GG was demonstrated. Fecal AFB1 excretion in GG-treated rats was increased via bacterial AFB1 binding. Furthermore, AFB1-associated growth faltering and liver injury were alleviated with GG treatment.  相似文献   

5.
6.
7.
8.
A scientific workshop was held in 2006 to discuss the use of in vitro Absorption, Distribution, Metabolism, and Excretion (ADME) data in chemical bioaccumulation assessments for fish. Computer-based (in silico) modeling tools are widely used to estimate chemical bioaccumulation. These in silico methods have inherent limitations that result in inaccurate estimates for many compounds. Based on a review of the science, workshop participants concluded that two factors, absorption and metabolism, represent the greatest sources of uncertainty in current bioaccumulation models. Both factors can be investigated experimentally using in vitro test systems. A variety of abiotic and biotic systems have been used to predict chemical accumulation by invertebrates, and dietary absorption of drugs and xenobiotics by mammals. Research is needed to determine whether these or similar methods can be used to better predict chemical absorption across the gills and gut of fish. Scientists studying mammals have developed a stepwise approach to extrapolate in vitro hepatic metabolism data to the whole animal. A series of demonstration projects was proposed to investigate the utility of these in vitro–in vivo extrapolation procedures in bioaccumulation assessments for fish and delineate the applicability domain of different in vitro test systems. Anticipating research progress on these topics, participants developed a “decision tree” to show how in vitro information for individual compounds could be used in a tiered approach to improve bioaccumulation assessments for fish and inform the possible need for whole-animal testing.  相似文献   

9.
10.
We have previously reported that resistance exercise improved the iron status in iron-deficient rats. The current study investigated the mechanisms underlying this exercise-related effect. Male 4-week-old rats were divided into a group sacrificed at the start (week 0) (n?=?7), a group maintained sedentary for 6 weeks (S) or a group that performed exercise for 6 weeks (E), and all rats in the latter groups were fed an iron-deficient diet (12 mg iron/kg) for 6 weeks. The rats in the E group performed climbing exercise (5 min?×?6 sets/day, 3 days/week). Compared to the week 0 rats, the rats in the S and E groups showed lower tissue iron content, and the hematocrit, hemoglobin, plasma iron, and transferrin saturation values were all low. However, the tissue iron content and blood iron status parameters, and the whole body iron content measured using the whole body homogenates of the rats, did not differ between the S group and the E group. The messenger RNA (mRNA) expression levels of hepcidin, duodenal cytochrome b, divalent metal transporter 1, and ferroportin 1 did not differ between the S group and the E group. The apparent absorption of iron was significantly lower in the E group than in the S group. Therefore, it was concluded that resistance exercise decreases iron absorption, whereas the whole body iron content is not affected, and an increase in iron recycling in the body seems to be responsible for this effect.  相似文献   

11.
Distribution and Toxic Effects of Cadmium and Lead on Maize Roots   总被引:1,自引:0,他引:1  
Two-day-old seedlings of maize (Zea mays L.) were incubated on Cd and Pb nitrate solutions at the concentrations that inhibited root growth approximately by 50% after two-day-long incubation (LC50; 10–4 and 10–3 M, respectively) or completely terminated growth of the primary root after one-day-long incubation (LC; 5 × 10–4 and 10–2 M, respectively). Cd and Pb contents were measured using an anodic inversion voltammetric technique in a flow injection system and a histochemical method. At LC50, Cd and Pb were discerned, by histochemical techniques, in all root apical tissues, whereas in the root hair zone, the heavy metals were primarily accumulated in the apoplast of the rhizodermis and cortex and to a lesser extent, in the vascular tissues and parenchyma cells surrounding the metaxylem vessels. Insignificant accumulation of Cd and Pb in the pericycle probably explains why root branching was tolerant to these agents. At LC, Cd and Pb were found in the apoplast of all root tissues, in accordance with the practically complete inhibition of root growth and branching. Irrespectively of Cd and Pb concentrations in the external solution, the metal contents in the root apex exceeded those in the basal region. Procion dyes were used to assess cell death inflicted by Cd and Pb. At LC, the root cap and meristematic cells perished, together with the rhizodermal cells and the outer cortical cells of the root apex, whereas only the rhizodermal cells in the root apical region died at LC50. The evidence that Cd and Pb cross the endodermal barrier at LC presumes that, at lower metal concentrations, the Casparian strip and plasmalemma of the endodermis regulate the transport of these metals into the central cylinder. The authors conclude that the identical barriers control Cd and Pb transport in root tissues.  相似文献   

12.
Although cadmium (Cd) and fluoride may both have adverse effects on bone, most studies focus on a single agent. In this study, we investigated the effects of cadmium and fluoride on bone at a relative low level. Sprague–Dawley male rats were assigned randomly into four groups which were given sodium chloride, cadmium (50mg/L), and fluoride (20mg/L) alone, or in combination via drinking water. At the 12th week, urine, blood, and bone tissues were collected for biomarker assay, biomechanical assay, and histological assay. Cadmium had significantly adverse effects on bone mineral density, bone biomechanical property, and bone microstructure. Fluoride slightly increased vertebral bone mineral density but negatively affected bone biomechanical property and bone microstructure. Fluoride could reverse the decrease of vertebral bone mineral density caused by cadmium but could not improve the damage of bone biomechanical property and microstructure caused by cadmium. Tartrate-resistant acid phosphatase 5b levels in rats treated with cadmium and fluoride or in combination were 1–2.5 folds higher than the control. Our data suggest that low level of fluoride could reverse the decrease of vertebral bone mineral density caused by cadmium exposure but has no influence on appendicular skeleton damage caused by cadmium.  相似文献   

13.
The purpose of this study was to provide data about in vivo tissue distribution and excretion of diphenyl diselenide ((PhSe)2) in rats and mice through determination of selenium levels in different biological samples. (PhSe)2 (500?mg/kg, dissolved in canola oil) was administered to animals once a day per oral. After this, mice and rats were housed in metabolic cages (one animal per cage) and urine and feces were collected at specific times after treatment. Three to five animals per group (for each time-point) were anesthetized and blood samples were collected at 0 and 30?min, 24?h, at day 5, 15, and 30 after (PhSe)2 administration. The plasma and red blood cells were separated. Brain, liver, lungs, kidneys, and adipose tissue were also collected. The determination of selenium levels was performed by inductively coupled plasma atomic emission spectrometry. The main results indicate that: (1) urine is an important route of excretion of selenium originated from (PhSe)2 in mice and rats; (2) a large amount of (PhSe)2 or some of its metabolites are stored in fat; (3) the content of selenium found in plasma was low; and (4) liver and kidneys are the tissues with high amounts of selenium.  相似文献   

14.
The transxylosylation reaction products of β-xylosidase-1, excreted by Penicillium wortmanni IFO 7237 using β-(1→4)-xylobiose as substrate, have been separated by chromatography on activated charcoal into four fractions, designated as P-1, P-2, P-3, and P-4, respectively. They were further purified by preparative paper chromatography. The characterization and structural analysis were done by measurement of the degree of polymerization (DP) and specific rotation followed by methylation analysis. Moreover, the enzymatic structural analysis of transxylosylation products, with high performance liquid chromatography (HPLC), allowed the confirmation of each structure. The first product, P-1, was β-(1→3)-xylobiose and the second, P-2, was β-(1→4)-xylotriose, but, P-3 was O-β-d-xylopyranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose or isomeric xylo-triose and P-4 was assumed to be O-β-d-xylopyranosyl-(1→4)-[O-β-d-xylopyranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose.  相似文献   

15.
生物隋性纳米粒子的体内分布、移行和排泄   总被引:7,自引:0,他引:7  
给小鼠或兔静脉注射印度墨水或纳米活性炭,取标本进行病理观察或取胆汁和屎液制备涂片进行电镜观察.以研究生物惰性纳米粒子在体内的分布、移行及其排泄。结果在病理切片中发现纳米粒子除广泛分布于网状内皮系统外,也可见于胃肠道上皮细胞、杯状细胞等部位;电镜观察发现胆汁及屎液中存在大量纳米粒子。以上结果表明,生物惰性纳米粒子可在体内进行再分布及通过屎液、胆汁和杯状细胞排出体外。  相似文献   

16.
An experiment was conducted to invest effects of chronic cadmium poisoning on Zn, Cu, Fe, Ca, and metallothionein gene expression and protein synthesis in liver and kidney in rats. Forty rats, 6?weeks old, were randomly allocated into two groups. A group was given CdCl(2) (1?mg/KgCd(2+)) by intraperitoneal injection once a day. The other group was treated with normal saline in the same way. Liver and kidney were collected for analysis at the end of the third week. Results showed that Cd exposure increased Cd (P?相似文献   

17.
During the past decades, pharmacokinetics has been defined as the study of drug absorption, distribution, metabolism, and excretion (ADME), when the drug is introduced into a biological system, such as the human body. Pharmacokinetics is now challenged by the growing importance of transporters, a relatively new and potentially major factor in drug ADME. The recent intrusion of drug transporters means that there is no single mechanism by which drugs permeate through membranes. The presence of transporters in membranes modulates the traditional theory of ‘diffusional pharmacokinetics’ towards ‘vectorial pharmacokinetics’ in which ADME processes are governed more deterministically. Drug transporters are also clinically important. They can modulate the pharmacological activity of drugs by affecting their intracellular concentrations and causing toxicity in specific organs due to intracellular drug accumulation. Finally, they are key players in drug–drug interactions, where they are as important as the drug metabolizing enzymes.  相似文献   

18.
The absorbability of polyethylene glycol (PEG), a water-soluble nutritional marker, from the gastrointestinal tract of rat was examined using the [14C]-labeled compound ([14C]PEG) having a molecular weight of 4000. Intravenously injected [14C]PEG was readily excreted and recovered almost completely in the urine and neither hepatic nor renal uptake of the PEG was observed. Intragastrically administered [14C]PEG was eliminated in the urine with an average recovery of only 0.43 ± 0.13% (Mean ± S.D., n= 10) of the dose over 24 hr. From the gel column chromatographic profile of the radioactivity excreted in the urine after an oral dose, [14C]PEG was suggested to be absorbed in two forms, as an original form and as a low molecular weight component. The latter component might be the degraded product of PEG in the gastrointestinal tract. From these results it was confirmed that PEG with a molecular weight of 4000 is a satisfactory marker because of its low absorbability.  相似文献   

19.
CALCULATIONS of maximum permissible body burdens of polonium-210 for radiation workers and the general public made by the International Commission on Radiological Protection (ICRP) assume 0.06 as the fraction going from the gastrointestinal tract to blood1. This estimate is based on the work of Delia Rosa et al.2, in which freshly neutralized polonium chloride solution was given orally to rats by stomach intubation (gavage). Excretion functions and tissue retention were measured and used to calculate the transfer of polonium across the gut. Hill3 and Kauranen and Miettinen4, who studied the transfer of Po along the lichen-reindeer or caribou-man food chain, suggested that the 210Po found in the soft tissues of herbivores may be organically bound and therefore readily available to humans. Their data indicated that the 210Po ingested from reindeer meat was from five to twenty-five times more available than predicted from the transfer values adopted by the ICRP. Experiments reported here indicate that polonium secreted in the milk of a goat which had been given an acute oral dose of PoO2 is absorbed across the gut of rats in concentrations approximately twenty times greater than that absorbed when rats are fed PoO2 or PoCl4 in drinking water. These results are at least partial verification of the greater availability of 210Po through biological modification as estimated by Hill.  相似文献   

20.
目的:研究重组人甲状旁腺素(1-34)[rhPTH(1—34)]在大鼠体内的组织分布和排泄情况,为进一步的临床实验提供参考。方法:用^125I-同位素示踪法结合TCA酸沉淀法测定各主要器官组织的总放射性浓度和酸沉淀部分放射性浓度,获得rhPTH(1-34)的尿粪排泄和胆汁排泄数据。结果:各主要器官组织的总放射性浓度排序由高到低依次为:尿、肾、膀胱、肠内容物、肌肉、血清、肾上腺、空肠、肝、肺脏、卵巢、肠淋巴结、脾、胸腺、心脏、脂肪、睾丸和脑;大鼠皮下注射。^125I-rhPTH(1-34)后,骨骼组织中放射性分布低于血浆,但消除缓慢,血浆浓度4h较15min降低了78%,而骨骼浓度多数仅降低了50%以下;注射后72h,尿、粪分别排出注入放射性量的73.6%±10.9%和3.2%±1.3%,尿、粪合计排出注入放射性量的76.8%±11,4%;注射后12h,胆汁中累积排出注入放射性的6.64%±1.04%。经分子筛排阻HPLC证实,^125I-rhPTH(1-34)不与大鼠的血浆蛋白发生结合。结论:rhPTH(1-34)在泌尿系统中的分布较高,在脂肪和脑中最低,提示药物不易透过血脑屏障;就全身放射性分布而言,在骨骼中分布较高,提示药物具有一定的靶向性;rhPTH(1-34)主要经尿的形式排泄。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号