首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium verticillioides is one of the main pathogens of maize, causing ear and stalk rots. This fungus is also able to produce high levels of fumonisins, which have been linked to various illnesses in humans and animals. Previous studies have shown that maize hybrids genetically modified with the cry genes from the bacterium Bacillus thuringiensis (Bt) presented lower incidence of F. verticillioides and fumonisin levels, presumably through the reduction of insects, which could act as vectors of fungi. The aim of this study was to assess the incidence of F. verticillioides and the concentration of fumonisins in Bt and isogenic non-Bt hybrids (2B710Hx, 30F35YG, 2B710, and 30F35, respectively). The samples of 2B710Hx and 30F35YG presented lower F. verticillioides frequency than 2B710 and 30F35 samples. However, there was no statistical difference between fumonisin contamination when Bt and non-Bt samples were compared (P > 0.05). The results suggest that other environmental parameters could possibly trigger fumonisin production during plant development in the field; consequently, other management strategies should be applied to aid controlling fumonisin contamination in maize.  相似文献   

2.
The objective of this study was to evaluate the efficacy of three eco-friendly control agents, either singly or in a pairwise combination, for the control of the tomato leafminer, Tuta absoluta (Meyrick) (Lep: Gelechiidae). They include the naturally derived pesticide spinosad, a commercially available formulation of Bacillus thuringiensis var. Kurstaki (Bt), and a native population of Trichogramma brassicae Bezdenko (Hym: Trichogrammatidae). Tomato plants containing the T. absoluta were treated with one of the seven following treatments in a greenhouse: (1) a single release of T. brassicae against the eggs; (2) two applications of Bt (2 kg ha?1); (3) and (4) one application of spinosad at two rates (60 and 120 g a.i. ha?1); (5) T. brassicae release?+?Bt spray; (6) T. brassicae release?+?spinosad spray; and (7) spinosad spray?+?Bt spray. The highest mortality rate was recorded for the spinosad?+?Bt (88.33?±?1.43%) and T. brassicae?+?spinosad (78.33?±?3.74%) combinations, respectively; while the lowest mortality rate was obtained through the single application of T. brassicae (31.67?±?4.84%). Based on our results, the Bt and spinosad seem to be suitable candidates for combination with other biological and cultural techniques towards an integrated management of the tomato leafminer.  相似文献   

3.
Transgenic Bacillus thuringiensis (Bt) rice have been reported to acquire effective resistance against the target pests; however, the insertion and expression of alien Bt genes may have some unintended effects on the growth characteristics of rice. A screen-house experiment was conducted and repeated twice to investigate the growth characteristics and Bt protein expressions in two Bt rice lines [MH63 (Cry2A*) and MH63 (Cry1Ab/Ac)], which had different Bt protein expression levels in leaves, under zero nitrogen (N0) and recommended nitrogen (NR) fertilizer applications. Compared to the counterpart MH63, MH63 (Cry2A*) under N0 experienced accelerated leaf senescence and a lower internal N use efficiency (IEN), resulting in a 23.2% decrease in grain yield and a lower accumulated biomass. These variations were revealed to be correlated to the higher ratio of the Bt protein content to the soluble protein content (BTC/SPC) with a maximum value of 4.3‰ in MH63 (Cry2A*) leaves in the late growth stage. Under NR, no differences in growth characteristics between MH63 (Cry2A*) and MH63 were found. The growth characteristics of MH63 (Cry1Ab/Ac), with a lower BTC/SPC in the late growth stage compared to MH63 (Cry2A*), were identical to those of MH63 under the two N applications. Results show that the transgenic Bt rice MH63 (Cry2A*), with a relatively higher Bt protein expression in the late growth stage, had an inferior adaptation to nitrogen deficiency compared to its non-Bt counterpart. And this inferior adaptation was found to be correlated with the higher BTC/SPC in MH63 (Cry2A*) leaves in the late growth stage.  相似文献   

4.
In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95–99%; 2013:15–54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species L. terrestris revealed a considerable potential as an effective biocontrol agent contributing to a sustainable control of a Fusarium plant pathogen in wheat straw, thus reducing the infection risk for specific plant diseases in arable fields.  相似文献   

5.
A triplicate volcanic rock matrix–Bacillus thuringiensis–laccase WlacD (VRMs–Bt–WlacD) dye decolorization system was developed. WlacD was displayed on the B. thuringiensis MB174 cell surface to prepare a whole-cell laccase biocatalyst by using two repeat N-terminal domains of autolysin Mbg (Mbgn)2 as the anchoring motif. Immunofluorescence microscopic assays confirmed that the fusion protein (Mbgn)2–WlacD was anchored on the surface of the recombinant B. thuringiensis MB174. After optimization by a single factor test, L 9(34)-orthogonal test, Plackett–Burman test, steepest ascent method, and Box–Behnken response surface methodology, the whole-cell specific laccase activity of B. thuringiensis MB174 was improved to 555.2 U L?1, which was 2.25 times than that of the primary culture condition. Optimized B. thuringiensis MB174 cells were further adsorbed by VRMs to prepare VRMs–Bt–WlacD, an immobilized whole-cell laccase biocatalyst. Decolorization capacity of as-prepared VRMs–Bt–WlacD toward an initial concentration of 500 mg L?1 of an textile dye reactive blue 19 (RB19) aqueous solution reached 72.36% at a solid-to-liquid ratio of 10 g–100 mL. Repeated decolorization-activation operations showed the high decolorization capacity of VRMs–Bt–WlacD and have the potential for large-scale or continuous operations.  相似文献   

6.
Bacillus thuringiensis (Berliner) bears essential characteristics in the control of insect pests, such as its unique mode of action, which confers specificity and selectivity. This study assessed cry gene contents from Bt strains and their entomotoxicity against Diatraea saccharalis (F.) and Diatraea flavipennella (Box) (Lepidoptera: Crambidae). Bioassays with Bt strains were performed against neonates to evaluate their lethal and sublethal activities and were further analyzed by PCR, using primers to identify toxin genes. For D. saccharalis and D. flavipennella, 16 and 18 strains showed over 30% larval mortality in the 7th day, respectively. The LC50 values of strains for D. saccharalis varied from 0.08 × 105 (LIIT-0105) to 4104 × 105 (LIIT-2707) spores + crystals mL?1. For D. flavipennella, the LC50 values of strains varied from 0.40 × 105 (LIIT-2707) to 542 × 105 (LIIT-2109) spores + crystals mL?1. For the LIIT-0105 strain, which was the most toxic to D. saccharalis, the genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, cry8, and cry9C were detected, whereas for the strain LIIT-2707, which was the most toxic to D. flavipennella, detected genes were cry1Aa, cry1Ab, cry1Ac, cry1B, cry1D, cry1F, cry1I, cry2Aa, cry2Ab, and cry9. The toxicity data and toxin gene content in these strains of Bt suggest a great variability of activity with potential to be used in the development of novel biopesticides or as source of resistance genes that can be expressed in plants to control pests.  相似文献   

7.
Insect-resistant transgenic cotton has been commercialized for two decades. Most of the introduced cultivars express Bt gene(s) constitutively under the control of 35S promoter in whole-plant tissues. However, there have been other promoters considered by researchers to confine the toxin expression to targeted organ and tissues. We developed a triple-gene construct including GNA, cry1Ac and cp4 epsps genes. We attempted to confine cry1Ac expression to insect biting sites by cloning it to downstream of a wound-inducible promoter isolated from Asparagus officinalis (AoPR1). Moreover, to broaden the range of resistance, GNA was driven by the 35S promoter to target the sap-sucking insects like aphids which impose large losses in cotton production. To select the transformants in selection medium and for glyphosate tolerance, GNA and cry1Ac genes were accompanied with cp4 epsps gene. Two binary vectors harboring desired genes were constructed and utilized in the study (pGTGNAoC1AC and pGTGN35C1AC). Transformation of cultivar GSN-12 was carried out by employing Agrobacterium tumefaciens strain EHA105. Plantlets were primarily screened under glyphosate (N-phosphonomethyl glycine) selection pressure and subsequently subjected to molecular and biotoxicity assays. Introduction of cry1Ac and GNA to cotton plant conferred resistance to Spodoptera littoralis and Aphis gossypii Glover. Restriction of cry1Ac toxin protein to insect biting sites along with a plant lectin attributes significantly to insect pest management strategies.  相似文献   

8.
In this study, we questioned whether ground-level ozone (O3) induces hormesis in Japanese larch (Larix kaempferi) and its hybrid F1 (L. gmelinii var. japonica × L. kaempferi). In order to answer the question, we exposed seedlings of both taxa to four O3 treatments [ranging from ≈10 to 60 nmol(O3) mol–1] in open-top chambers for two consecutive growing seasons. We found a hormetic response in maximum photosynthetic rate (PNmax) at 1700 μmol(CO2) mol–1 and maximum rates of carboxylation (Vcmax) and electron transport (Jmax) in both larches. Stimulation of PNmax, Vcmax, and Jmax did not lead to suppressed plant productivity in Japanese larch, which followed a stress-tolerant strategy, but it did lead to suppressed plant productivity in hybrid larch which followed a competitive strategy. These findings are the first to suggest that stimulation of physiological functions by low O3 exposures may have negative consequences for larch reproduction.  相似文献   

9.
The corn leafhopper [Dalbulus maidis (DeLong & Wolcott)] is a specialist on Zea (Poaceae) that coevolved with maize (Zea mays mays) and its teosinte (Zea spp.) relatives. This study tested the hypothesis that host acceptance by females varies among Zea hosts, and is correlated with variation in defensive levels across those hosts. Prior studies revealed differences in plant defenses among Zea hosts and corresponding differences in corn leafhopper performance. Thus, host acceptance was expected to be correlated with defensive levels and offspring performance across Zea hosts, following the hypothesis that offspring performance mediates host preference. In parallel, host acceptance was expected to be correlated with transitions in life history strategy (perennial to annual life cycle), domestication status (wild to domesticated), and breeding intensity (landrace to hybrid variety) in Zea because variation in defensive levels and corn leafhopper performance were shown in prior studies to be correlated with those transitions. The study’s hypotheses were tested by comparing, under no-choice conditions, host acceptance by corn leafhopper of a suite of Zea hosts encompassing those transitions: perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), and landrace and commercial hybrid maize. The results did not show differences in host acceptance for oviposition or feeding among the hosts. Thus, under no-choice conditions, all Zea hosts may be similarly acceptable for feeding and oviposition, despite marked ovipositional preferences under choice conditions and poorer offspring performance on teosintes relative to maize shown previously. The results suggested also that oviposition frequency per plant by females was not correlated with their offspring’s performance.  相似文献   

10.

Key message

The portfolio of available Reduced height loci (Rht-B1, Rht-D1, and Rht24) can be exploited for hybrid wheat breeding to achieve the desired heights in the female and male parents, as well as in the hybrids, without adverse effects on other traits relevant for hybrid seed production.

Abstract

Plant height is an important trait in wheat line breeding, but is of even greater importance in hybrid wheat breeding. Here, the height of the female and male parental lines must be controlled and adjusted relative to each other to maximize hybrid seed production. In addition, the height of the resulting hybrids must be fine-tuned to meet the specific requirements of the farmers in the target regions. Moreover, this must be achieved without adversely impacting traits relevant for hybrid seed production. In this study, we explored Reduced height (Rht) loci effective in elite wheat and exploited their utilization for hybrid wheat breeding. We performed association mapping in a panel of 1705 wheat hybrids and their 225 parental lines, which besides the Rht-B1 and Rht-D1 loci revealed Rht24 as a major QTL for plant height. Furthermore, we found that the Rht-1 loci also reduce anther extrusion and thus cross-pollination ability, whereas Rht24 appeared to have no adverse effect on this trait. Our results suggest different haplotypes of the three Rht loci to be used in the female or male pool of a hybrid breeding program, but also show that in general, plant height is a quantitative trait controlled by numerous small-effect QTL. Consequently, marker-assisted selection for the major Rht loci must be complemented by phenotypic selection to achieve the desired height in the female and male parents as well as in the wheat hybrids.
  相似文献   

11.
12.
We present evidence that Danaea plicata, endemic to Costa Rica, is a hybrid between D. carillensis and D. crispa. The laminae of D. plicata are intermediate in several morphological characters between the two putative parents, and the spores of D. plicata are misshapen and collapsed. The stomatal density of D. plicata is intermediate between that of D. crispa, which has no stomata, and D. carillensis. Circumstantial evidence also supports hybrid origin: D. plicata occurs only within the elevational range of its putative parents, and it is often found growing with them. This is the second report of a hybrid in Danaea. A lectotype is designated for D. plicata .  相似文献   

13.
As traditionally circumscribed, Cuscuta sect. Denticulatae is a group of three parasitic plant species native to the deserts of Western USA (Cuscuta denticulata, Cuscuta nevadensis) and the central region of Baja California, Mexico (Cuscuta veatchii). Molecular phylogenetic studies confirmed the monophyly of this group and suggested that the disjunct C. veatchii is a hybrid between the other two species. However, the limited sampling left the possibility of alternative biological and methodological explanations. We expanded our sampling to multiple individuals of all the species collected from across their entire geographical ranges. Sequence data from the nuclear and plastid regions were used to reconstruct the phylogeny and find out if the topological conflict was maintained. We obtained karyotype information from multiple individuals, investigated the morphological variation of the group thorough morphometric analyses, and compiled data on ecology, host range, and geographical distribution. Our results confirmed that C. veatchii is an allotetraploid. Furthermore, we found previously unknown autotetraploid population of C. denticulata, and we describe a new hybrid species, Cuscuta psorothamnensis. We suggest that this newly discovered natural hybrid is resulting from an independent (and probably more recent) hybridization event between the same diploid parental species as those of C. veatchii. All the polyploids showed host shift associated with hybridization and/or polyploidy and are found growing on hosts that are rarely or never frequented by their diploid progenitors. The great potential of this group as a model to study host shift in parasitic plants associated with recurrent allopolyploidy is discussed.  相似文献   

14.
Ulleung Island is an oceanic volcanic island in Korea, which has never been connected to the adjacent continent. Previous studies highlighted Ulleung Island as an excellent system to study the pattern and process of early stages of flowering plant evolutions on oceanic island. The predominant mode of speciation in flowering plants on Ulleung Island appears to be anagenesis. However, the potentially important role of hybrid speciation among incompletely reproductively isolated lineages cannot be ruled out. Viola woosanensis (Violaceae) is of purportedly hybrid origin between V. ulleungdoensis (i.e., formerly recognized as V. selkirkii in Ulleung Island) and V. chaerophylloides, based on morphology. To examine the origin of V. woosanensis, we sampled a total of 80 accessions, including V. woosanensis and its putative parental species and sequenced nrDNA ITS, and four highly variable chloroplast noncoding regions (trnL-trnF, rpl16 intron, atpF-atpH, and psbA-trnH). Representative species of Viola from Korea were also included in the phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference). Additive polymorphic sites in the nrDNA ITS regions were confirmed by cloning amplicons from representative species. The molecular data strongly supported the hybrid origin of V. woosanensis, and the maternal and paternal parent were determined to be V. ulleungdoensis and V. chaerophylloides, respectively. The presence of two parental ribotypes in V. woosanensis (with the exception in one population) was confirmed by cloning, suggesting V. woosanensis is primarily the F1 generation. No trace of backcrossing and introgression with its parents was detected due to low fertility of hybrid species. We found a multiple and unidirectional hybrid origin of V. woosanensis. Additional studies are required to determine which factors contribute to asymmetric gene flow of Viola species in Ulleung Island.  相似文献   

15.
Sweet corn has recently experienced sharp rise in demand worldwide. Recessive sugary1 (su1) and shrunken2 (sh2) that enhances kernel sweetness have been abundantly used in sweet corn breeding. Analyses of genetic diversity among sweet corn inbreds assume great significance for their effective utilization in hybrid breeding. A set of 48 diverse sweet corn genotypes encompassing su1su1, sh2sh2 and su1su1/sh2sh2 types were analyzed using 56 microsatellite markers. A total of 213 alleles with mean of 3.8 alleles per locus were generated. Two unique- and 12 rare- alleles were identified. The average PIC and genetic dissimilarity was 0.50 and 0.73, respectively. Cluster analysis grouped the inbreds into three major clusters, with each of the su1su1-, sh2sh2- and su1su1/sh2sh2-types were broadly clustered together. Principal coordinate analyses also depicted the diverse origin of the genotypes. The study identified inbreds for synthesis of pools and pedigree populations to develop novel inbreds. The study led to the identification of prospective heterotic combinations in various genetic backgrounds (sh2sh2 × sh2sh2, su1su1 × su1su1, su1su1/sh2sh2 × su1su1/sh2sh2, sh2sh2 × su1su1/sh2sh2 and su1su1 × su1su1/sh2sh2).  相似文献   

16.
Bacillus thuringiensis (Bt) is one of the bioinsecticides used worldwide due to its specific toxicity against target pests in their larval stage. Despite this advantage, its use is limited because of their short persistence in field when exposed to ultra violet light and changing environmental conditions. In this work, microencapsulation has been evaluated as a promising method to improve Bt activity. The objective of this study was to develop and characterize native and modified amaranth starch granules and evaluate their potential application as wall materials in the microcapsulation of B thuringiensis serovar kurstaki HD-1 (Bt- HD1), produced by spray drying. Native amaranth starch granules were treated by hydrolyzation, high energy milling (HEM) and were chemically modified by phosphorylation and succinylation. The size of the Bt microcapsules varied from 12.99 to 17.14 μm adequate to protect the spores of Bt from ultraviolet radiation. The aw coefficient of the microcapsules produced by the modified starches after drying was low (0.14–1.88), which prevent microbial growth. Microcapsules prepared with phosphorylated amaranth starch presented the highest bacterial count and active material yield. Different concentrations of the encapsulated Bt formulation in phosphorylated amaranth starch showed a high level of insecticidal activity when tested on M. sexta larvae and has great potential to be developed as a bioinsecticide formulation, also, the level of toxicity is much higher than that found in some of the products commercially available.  相似文献   

17.
Coccodiella is a genus of plant-parasitic species in the family Phyllachoraceae (Phyllachorales, Ascomycota), i.e., tropical tar spot fungi. Members of the genus Coccodiella are tropical in distribution and are host-specific, growing on plant species belonging to nine host plant families. Most of the known species occur on various genera and species of the Melastomataceae in tropical America. In this study, we describe the new species C. calatheae from Panama, growing on Calathea crotalifera (Marantaceae). We obtained ITS, nrLSU, and nrSSU sequence data from this new species and from other freshly collected specimens of five species of Coccodiella on members of Melastomataceae from Ecuador and Panama. Phylogenetic analyses allowed us to confirm the placement of Coccodiella within Phyllachoraceae, as well as the monophyly of the genus. The phylogeny of representative species within the family Phyllachoraceae, including Coccodiella spp., graminicolous species of Phyllachora and taxa with erumpent to superficial stroma from several host families, suggests that the genus Phyllachora might be polyphyletic. Furthermore, tar spot fungi with superficial or erumpent perithecia seem to be restricted to the family Phyllachoraceae, independently of the host plant. We also discuss the biodiversity and host-plant patterns of species of Coccodiella worldwide.  相似文献   

18.
19.
Pectinase (endo-polygalacturonase) is the key enzyme splitting plant pectin. The corresponding single gene PGU1 is documented for the yeast S. cerevisiae. On the basis of phylogenetic analysis of the PGU nucleotide sequence available in the GenBank, a family of divergent PGU genes is found in the species complex S. bayanus: S. bayanus var. uvarum, S. eubayanus, and hybrid taxon S. pastorianus. The PGU genes have different chromosome localization.  相似文献   

20.
Bruguiera hainesii (Rhizophoraceae) is one of the two Critically Endangered mangrove species listed in the IUCN Red List of Threatened Species. Although the species is vulnerable to extinction, its genetic diversity and the evolutionary relationships with other Bruguiera species are not well understood. Also, intermediate morphological characters imply that the species might be of hybrid origin. To clarify the genetic relationship between B. hainesii and other Bruguiera species, we conducted molecular analyses including all six Bruguiera species using DNA sequences of two nuclear genes (CesA and UNK) and three chloroplast regions (intergenic spacer regions of trnL-trnF, trnS-trnG and atpB-rbcL). For nuclear DNA markers, all nine B. hainesii samples from five populations were heterozygous at both loci, with one allele was shared with B. cylindrica, and the other with B. gymnorhiza. For chloroplast DNA markers, the two haplotypes found in B. hainesii were shared only by B. cylindrica. These results suggested that B. hainesii is a hybrid between B. cylindrica as the maternal parent and B. gymnorhiza as the paternal one. Furthermore, chloroplast DNA haplotypes found in B. hainesii suggest that hybridization has occurred independently in regions where the distribution ranges of the parental species meet. As the IUCN Red List of Threatened Species currently excludes hybrids (except for apomictic plant hybrids), the conservation status of B. hainesii should be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号