首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 485 毫秒
1.
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are predicted to resist invasion when they contain native species that are functionally similar to potential invaders; where phenology may be a key functional trait. Nutrient reduction is another common strategy for reducing invasion following native species restoration, because soil nitrogen (N) enrichment often facilitates invasion. Here, we focus on restoring the herbaceous community associated with coastal sage scrub vegetation in Southern California; these communities are often highly invaded, especially by exotic annual grasses that are notoriously challenging for restoration. We created experimental plant communities composed of the same 20 native species, but manipulated functional group abundance (according to growth form, phenology, and N‐fixation capacity) and soil N availability. We fertilized to increase N, and added carbon to reduce N via microbial N immobilization. We found that N reduction decreased exotic cover, and the most successful seed mix for reducing exotic abundance varied depending on the invader functional type. For instance, exotic annual grasses were least abundant when the native community was dominated by early active forbs, which matched the phenology of the exotic annual grasses. Our findings show that nutrient availability and the timing of biotic interactions are key filters that can be manipulated in restoration to prevent invasion and maximize native species recovery.  相似文献   

2.
Increased or fluctuating resources may facilitate opportunities for invasive exotic plants to dominate. This hypothesis does not, however, explain how invasive species succeed in regions characterized by low resource conditions or how these species persist in the lulls between high resource periods. We compare the growth of three co-occurring C4 perennial bunchgrasses under low resource conditions: an exotic grass, Eragrostis curvula (African lovegrass) and two native grasses, Themeda triandra and Eragrostis sororia. We grew each species over 12?weeks under low nutrients and three low water regimes differentiated by timing: continuous, pulsed, and mixed treatments (switched from continuous to pulsed and back to continuous). Over time, we measured germination rates, time to germination (first and second generations), height, root biomass, vegetative biomass, and reproductive biomass. Contrary to our expectations that the pulsed watering regime would favor the invader, water-supply treatments had little significant effect on plant growth. We did find inherent advantages in a suite of early colonization traits that likely favor African lovegrass over the natives including faster germination speed, earlier flowering times, faster growth rates and from 2?weeks onward it was taller. African lovegrass also showed similar growth allocation strategies to the native grasses in terms of biomass levels belowground, but produced more vegetative biomass than kangaroo grass. Overall our results suggest that even under low resource conditions invasive plant species like African lovegrass can grow similarly to native grasses, and for some key colonization traits, like germination rate, perform better than natives.  相似文献   

3.
Lauren M. Smith  Spencer Hall 《Oikos》2016,125(6):839-848
Invasive plants can inflict great harm, yet drivers of successful invasion remain unclear. Many invaders of North American deciduous forests exhibit extended leaf phenology (ELP), or longer growing season relative to natives. ELP may grant invaders competitive advantages, but we argue that ELP more potently drives invasion in the presence of herbivores. ELP invaders can support herbivores by lessening starvation during winter; consequently, native plants may suffer when attacked later through apparent competition. As modeled here, even short ELP can promote competitive success of invaders, and apparent competition sharply enhances ELP invader dominance. In ‘partial enemy escape’ scenarios, a less palatable ELP invader nearly excludes a preferred native where an invader without ELP could not. Together, ELP and apparent competition enhance invasion even when biotic resistance should suppress it, i.e. when the invader competes weakly or provides preferred forage. Thus, ELP‐apparent competition interactions grant invaders considerable success while challenging core tenets of invasion ecology.  相似文献   

4.
The rate of freshwater invasions may be increasing, and macroinvertebrate invaders can have significant impacts on native macroinvertebrate assemblage structure through biotic interactions. More pollution-tolerant invaders can often replace native species. We examined implications of a species replacement for accurate biological monitoring of river systems using biotic indices. Our study uses Northern Ireland and the Isle of Man as examples of countries that possess river networks with many riverine macroinvertebrate assemblages subject to invasion. The introduced amphipod crustacean Gammarus pulex has replaced the native species G. duebeni celticus in many rivers in N. Ireland and the Isle of Man. Extensive seasonal data sets (119 sites) from three river networks, Lough Neagh and the Lagan in N. Ireland, and island-wide in the Isle of Man, were used to investigate the assumed equivalence of the native and invader in biotic indices concerned with the water quality monitoring system. Based on the derivation of the Biological Monitoring Working Party (BMWP) score, the Average Score Per Taxon (ASPT), as an example of a commonly used biotic index of water quality, we found index scores were lower in G. pulex sites compared to G. d. celticus-only sites. This indicated that assemblages were dominated by taxa more tolerant of organic pollution in the invader sites and more sensitive in the native sites. Inclusion of the invader in generation of the ASPT index, overinflated the ASPT values obtained compared to those with the native’s inclusion. This questions the accuracy of the ASPT and similar indices in rivers where the invader had replaced the native. We argue that with invasion pressures increasing, the validity of water quality indices such as the BMWP/ASPT needs to be re-examined in catchments where invaders have replaced natives. Indices such as the BMWP/ASPT are based on family level taxa and are inevitably coarse in their resolution given the wide range of water qualities tolerated by different genera within families. We argue that this resolution is even more compromised by the presence of very pollution-tolerant invaders, who may have replaced natives in disturbed or degraded river systems. The whole structure of water quality indices such as the BMWP/ASPT may need revising to take into account the presence of invasive species within monitored assemblages.  相似文献   

5.
Mono-dominance by invasive species provides opportunities to explore determinants of plant distributions and abundance; however, linking mechanistic results from small scale experiments to patterns in nature is difficult. We used experimentally derived competitive effects of an invader in North America, Acroptilon repens, on species with which it co-occurs in its native range of Uzbekistan and on species with which it occurs in its non-native ranges in North America, in individual-based models. We found that competitive effects yielded relative abundances of Acroptilon and other species in models that were qualitatively similar to those observed in the field in the two ranges. In its non-native range, Acroptilon can occur in nearly pure monocultures at local scales, whereas such nearly pure stands of Acroptilon appear to be much less common in its native range. Experimentally derived competitive effects of Acroptilon on other species predicted Acroptilon to be 4–9 times more proportionally abundant than natives in the North American models, but proportionally equal to or less than the abundance of natives in the Eurasian models. Our results suggest a novel way to integrate complex combinations of interactions simultaneously, and that biogeographical differences in the competitive effects of an invader correspond well with biogeographical differences in abundance and impact.  相似文献   

6.
Alien plant species invasiveness and impact on diversity (i.e. species richness and composition) can be driven by the altered competitive interactions experienced by the invader in its invaded range compared to its native range. Trait-based competition effects on invasiveness can be mediated through size-asymmetric competition, i.e. a trait suit of the invader that drives competitive dominance, and through ‘niche differences', i.e. trait differentiation and thus minimized competition between invader and the invaded community. In terms of invasion impact, size-asymmetric competition is expected to result in competitive exclusion of co-occurring subordinate species, whereas ‘niche differences' might result in competitive exclusion of the most functionally similar co-occurring species. Although observational work does not allow the full disentanglement of both trait-based effects, it does allow to verify the occurrence of expected theoretical trait patters. In this study, we explored the trait-based competition effects on invasiveness and diversity impact for Rosa rugosa in both its invaded range in Belgium and its native range in Japan, based on seven functional traits across 100 vegetation plots. Following the predictions for enhanced invasiveness, we found much lower functional overlap between R. rugosa and the co-occurring species in the invaded range compared to the native range. This likely also explains the absence of diversity impact in its native range. Despite the absence of changes in species richness in the invaded range, the invader did strongly impact species composition of invaded communities. This impact occurred through strong shade tolerance responses, suggesting size-asymmetric competition effects and cover loss of co-occurring dominant species, next to exclusion of co-occurring species most functionally similar to the invader; suggesting niche difference effects. In conclusion, this case-study illustrates how exploring functional trait patterns across a species native and invaded range can help in understanding how trait-based competition processes can affect invasiveness and community impact.  相似文献   

7.
There is growing interest in the addition of carbon (C) as sucrose or sawdust to the soil as a tool to reduce plant‐available nitrogen (N) and alter competitive interactions among species. The hypothesis that C addition changes N availability and thereby changes competitive dynamics between natives and exotics was tested in a California grassland that had experienced N enrichment. Sawdust (1.2 kg/m) was added to plots containing various combinations of three native perennial bunchgrasses, exotic perennial grasses, and exotic annual grasses. Sawdust addition resulted in higher microbial biomass N, lower rates of net N mineralization and net nitrification, and higher concentrations of extractable soil ammonium in the soil. In the first year sawdust addition decreased the degree to which exotic annuals competitively suppressed the seedlings of Nassella pulchra and, to a lesser extent, Festuca rubra, both native grasses. However there was no evidence of reduced growth of exotic grasses in sawdust‐amended plots. Sawdust addition did not influence interactions between the natives and exotic perennial grasses. In the second year, however, sawdust addition did not affect the interactions between the natives and either group of exotic grasses. In fact, the native perennial grasses that survived the first year of competition with annual grasses significantly reduced the aboveground productivity of annual grasses even without sawdust addition. These results suggest that the addition of sawdust as a tool in the restoration of native species in our system provided no significant benefit to natives over a 2‐year period.  相似文献   

8.
The ability of an invasive species to establish is mostly determined by its biotic interactions with native species from the recipient community. Here, we evaluate the competitive effects and responses of the invasive Eragrostis plana when interacting with native species, in order to identify possible mechanisms driving invasion in Río de la Plata grasslands. A pairwise competition experiment was performed consisting of treatments that varied in the identity of neighbour plant species: (i) control (no interaction); (ii) intraspecific interaction; (iii) interspecific interaction between native and invasive species; and (iv) interspecific interaction between two co‐occurring native species. Data analysis was separated into the effect of E. plana on the performance of three native perennial grasses (target species: Aristida laevis, Eragrostis neesii and Paspalum notatum) and the response of E. plana to natives (target species: E. plana). Separately for each target species, components of plant performance were compared between neighbouring species treatments. We found that the strength of competitive interactions depended on both target and neighbour species identity. Regarding natives, interspecific competition was stronger than intraspecific. Native species showed distinctive responses to whether the neighbour was the invasive or a co‐occurring native (Eragrostis lugens). Competition between E. plana and native species was stronger than between co‐occurring natives. We demonstrated E. plana had a greater negative effect on native's species performance than the native congener E. lugens. Regarding E. plana, intraspecific competition was stronger than interspecific, and its response was positive or neutral when interacting with natives, suggesting its high tolerance to grow in competition with neighbours. We conclude E. plana's negative effects on native species performance, and its positive or neutral responses to neighbouring native plants demonstrate its strong competitive ability in the recipient community. This may explain its invasion success in southern Brazil and in the encompassing Río de la Plata grasslands. Abstract in Spanish is available with online material.  相似文献   

9.
Differences between native and exotic species in competitive ability and susceptibility to herbivores are hypothesized to facilitate coexistence. However, little fieldwork has been conducted to determine whether these differences are present in invaded communities. Here, we experimentally examined whether asymmetries exist between native and exotic plants in a community invaded for over 200 years and whether removing competitors or herbivores influences coexistence. We found that natives and exotics exhibit pronounced asymmetries, as exotics are competitively superior to natives, but are more significantly impacted by herbivores. We also found that herbivore removal mediated the outcome of competitive interactions and altered patterns of dominance across our field sites. Collectively, these findings suggest that asymmetric biotic interactions between native and exotic plants can help to facilitate coexistence in invaded communities.  相似文献   

10.
When entering a new community, introduced species leave behind members of their native community while simultaneously forming novel biotic interactions. Escape from enemies during the process of introduction has long been hypothesized to drive the increased performance of invasive species. However, recent studies and quantitative syntheses find that invaders often receive similar, or even more, damage from enemies than do native species. Therefore, invasives may be those more tolerant to enemy damage, or those able to maintain competitive ability in light of enemy damage. Here, we investigate whether tolerance and competitive ability could contribute to invasive plant success. We determined whether invasive plants were more competitive than native or noninvasive exotic species in both the presence and absence of simulated herbivory. We found competition and herbivory additively reduced individual performance, and affected the performance of native, invasive, and noninvasive exotic species’ to the same degree. However, invasives exerted stronger competitive effects on an abundant native species (Elymus canadensis) in both the presence and absence of herbivory. Therefore, while invasive species responded similarly to competition and simulated herbivory, their competitive effects on natives may contribute to their success in their introduced range.  相似文献   

11.
Increased resource supply commonly facilitates invasion by exotic plants, raising concerns over atmospheric nitrogen (N) deposition; fast‐growing annual invaders may have exceptional abilities to outperform native perennials in response to N pulses. However, it remains unclear whether this advantage is due to growth differences or to shifts in competitive outcomes, and whether annual invaders are favored by N deposition in their introduced range over native range. We conducted an experiment to compare the growth and competitive ability of Bromus tectorum and its native perennial grasses either at three different N regimes or between China and North America. The soil used in this experiment was from mountain grasslands as a neutral growth medium. The total biomass of three natives from China and North America did not increase along the N deposition gradient. Nitrogen addition enhanced the growth of North American B. tectorum instead of Chinese B. tectorum. Nitrogen addition increased the competitive ability of B. tectorum, but had no effect on that of natives. North American B. tectorum was bigger and had greater competitive ability and root weight ratio than Chinese B. tectorum. In contrast, North American natives were less competitive than Chinese natives. There was a significantly positive correlation between the growth of B. tectorum grown alone and its competitive ability. These findings suggest that N deposition may enhance the B. tectorum invasion through disproportionally increasing the growth and maintaining inherent competitive advantages of North American B. tectorum, further increasing threats to introduced ranges. There were differences in the growth and competitive ability of B. tectorum and natives between China and North America, which explains why B. tectorum is a minor component at home and becomes a successful invader abroad.  相似文献   

12.
Resistant invaders can convey benefits to native species   总被引:3,自引:0,他引:3  
Kirstin Kopp  Jukka Jokela 《Oikos》2007,116(2):295-301
Introduced species are recognized as a major threat to native species. One factor that facilitates their spread is that they are often resistant to natural enemies of their native competitor. Negative effects of the invaders are often documented, but invaders may also convey benefits to the natives if they interfere with the native host-parasite interactions. If invaders act as resistant targets for the native parasites, they may reduce the density of the infectious transmission stages ('dilution effect') and decrease the risk of infection for the natives. We tested this hypothesis by exposing coexisting native and introduced freshwater snails to infectious stages of a native parasite. The native hosts showed a significantly reduced infection rate when exposed together with the resistant invader. A significant amount of the parasite transmission stages was wasted on the resistant invader leading to lower risk of infection for the natives. Our results show that invaders may convey benefits to the native competitors by perturbing the native host-parasite interaction and support the idea that the 'dilution effect' could be important for invaded communities.  相似文献   

13.
Baruch Z  Jackson RB 《Oecologia》2005,145(4):522-532
The invasion of African grasses into Neotropical savannas has altered savanna composition, structure and function. The projected increase in atmospheric CO2 concentration has the potential to further alter the competitive relationship between native and invader grasses. The objective of this study was to quantify the responses of two populations of a widespread native C4 grass (Trachypogon plumosus) and two African C4 grass invaders (Hyparrhenia rufa and Melinis minutiflora) to high CO2 concentration interacting with two primary savanna stressors: drought and herbivory. Elevated CO2 increased the competitive potential of invader grasses in several ways. Germination and seedling size was promoted in introduced grasses. Under high CO2, the relative growth rate of young introduced grasses was twice that of native grass (0.58 g g−1 week−1 vs 0.25 g g−1 week−1). This initial growth advantage was maintained throughout the course of the study. Well-watered and unstressed African grasses also responded more to high CO2 than did the native grass (biomass increases of 21–47% compared with decreases of 13–51%). Observed higher water and nitrogen use efficiency of invader grasses may aid their establishment and competitive strength in unfertile sites, specially if the climate becomes drier. In addition, high CO2 promoted lower leaf N content more in the invader grasses. The more intensive land use, predicted to occur in this region, may interact with high CO2 to fincreasesavor the African grasses, as they generally recovered faster after simulated herbivory. The superiority of invader grasses under high CO2 suggests further in their competitive strength and a potential increased rate of displacement of the native savannas in the future by grasslands dominated by introduced African species.  相似文献   

14.
Background and AimsDisplacement of native plant species by non-native invaders may result from differences in their carbon economy, yet little is known regarding how variation in leaf traits influences native–invader dynamics across climate gradients. In Hawaii, one of the most heavily invaded biodiversity hotspots in the world, strong spatial variation in climate results from the complex topography, which underlies variation in traits that probably drives shifts in species interactions.MethodsUsing one of the most comprehensive trait data sets for Hawaii to date (91 species and four islands), we determined the extent and sources of variation (climate, species and species origin) in leaf traits, and used mixed models to examine differences between natives and non-native invasives.Key ResultsWe detected significant differences in trait means, such that invasives were more resource acquisitive than natives over most of the climate gradients. However, we also detected trait convergence and a rank reversal (natives more resource acquisitive than invasives) in a sub-set of conditions. There was significant intraspecific trait variation (ITV) in leaf traits of natives and invasives, although invasives expressed significantly greater ITV than natives in water loss and photosynthesis. Species accounted for more trait variation than did climate for invasives, while the reverse was true for natives. Incorporating this climate-driven trait variation significantly improved the fit of models that compared natives and invasives. Lastly, in invasives, ITV was most strongly explained by spatial heterogeneity in moisture, whereas solar energy explains more ITV in natives.ConclusionsOur results indicate that trait expression and ITV vary significantly between natives and invasives, and that this is mediated by climate. These findings suggest that although natives and invasives are functionally similar at the regional scale, invader success at local scales is contingent on climate.  相似文献   

15.
Biological invasions dramatically affect the distribution, abundance and reproduction of many native species. Because of these ecological effects, exotic species can also influence the evolution of natives exposed to novel interactions with invaders. Evolutionary changes in natives in response to selection from exotics are usually overlooked, yet common responses include altered anti-predator defenses, changes in the spectrum of resources and habitats used, and other adaptations that allow native populations to persist in invaded areas. Whether a native population is capable of responding evolutionarily to selection from invaders will depend on the demographic impact of the invader, the genetic architecture and genetic variability of the native population and potentially the history of previous invasions. In some cases, natives will fail to evolve or otherwise adapt, and local or global extinction will result. In other cases, adaptive change in natives may diminish impacts of invaders and potentially promote coexistence between invaders and natives. Here, we review the evidence for evolutionary responses of native species to novel community members. We also discuss how the effects of introduced species may differ from those caused by natural range expansions of native species. Notably, introduced species may come from remote biotas with no previous evolutionary history with the native community. In addition, the rate of addition of introduced species into communities is much greater than all but the most extreme cases of historical biotic exchange. Understanding the evolutionary component of exotic/native species interactions is critical to recognizing the long-term impacts of biological invasions, and to understanding the role of evolutionary processes in the assembly and dynamics of natural communities.  相似文献   

16.
The processes underlying plant invasions have been the subject of much ecological research. Understanding mechanisms of plant invasions are difficult to elucidate from observations, yet are crucial for ecological management of invasions. Hieracium lepidulum, an asteraceous invader in New Zealand, is a species for which several explanatory mechanisms can be raised. Alternative mechanisms, including competitive dominance, disturbance of resident vegetation allowing competitive release or nutrient resource limitation reducing competition with the invader are raised to explain invasion. We tested these hypotheses in two field experiments which manipulated competitive, disturbance and nutrient environments in pre‐invasion and post‐invasion vegetation. H. lepidulum and resident responses to environmental treatments were measured to allow interpretation of underlying mechanisms of establishment and persistence. We found that H. lepidulum differed in functional response profile from native species. We also found that other exotic invaders at the sites were functionally different to H. lepidulum in their responses. These data support the hypothesis that different invaders use different invasion mechanisms from one another. These data also suggest that functional differentiation between invaders and native resident vegetation may be an important contributing factor allowing invasion. H. lepidulum appeared to have little direct competitive effect on post‐invasion vegetation, suggesting that competition was not a dominant mechanism maintaining its persistence. There was weak support for disturbance allowing initial establishment of H. lepidulum in pre‐invasion vegetation, but disturbance did not lead to invader dominance. Strong support for nutrient limitation of resident species was provided by the rapid competitive responses with added nutrients despite presence of H. lepidulum. Rapid competitive suppression of H. lepidulum once nutrient limitation was alleviated suggests that nutrient limitation may be an important process allowing the invader to dominate. Possible roles of historical site degradation and/or invader‐induced soil chemical/microbial changes in nutrient availability are discussed.  相似文献   

17.
Robert R. Blank 《Plant and Soil》2010,326(1-2):331-343
Few studies have examined plant–soil relationships in competitive arenas between exotic and native plants in the western United States. A pair-wise competitive design was used to evaluate plant–soil relationships between seedlings of the exotic annual grasses Bromus tectorum and Taeniatherium caput-medusae and the native perennial grasses Elymus elymoides and Pseudoroegneria spicata. Two soils were tested: an arid soil (argid) occupied by E. elymoides and presently invaded by B. tectorum and a high elevation, high organic matter, soil (aquept) where none of the tested species would typically occur. Plant growth proceeded for 85 days at which time above-ground biomass and tissue nutrient concentrations were quantified. Soil also was collected from the rooting zone beneath each species and analyzed for various nutrient pools. The exotic species had significantly greater above-ground biomass than the natives and grew far better in the aquept soil than the argid soil. Growth of B. tectorum, and to some degree, T. caput-medusae was suppressed in intraspecific competition and enhanced, especially in the aquept soil, when competing with the natives. Although not significant, biomass of natives strongly trended downward when competing with the exotic grasses. Overall, concentrations of tissue nutrients were minimally affected by competition, but natives tended to be more negatively affected by competition with exotics. Except for phosphorus (P), all species had significantly greater nutrient concentrations when growing in the aquept soil compared to the argid soil. In both soils, exotics had significant greater tissue concentrations of manganese (Mn), magnesium (Mg), and iron (Fe), while natives had significantly greater nitrogen (N). Species affects on soil nutrient pools occurred mostly in the aquept soil with exotic species significantly decreasing pools of available N, potentially available N, and soil-solution pools of calcium (Ca2+), potassium (K+), and magnesium (Mg2+) relative to natives. Overall, the data suggest that, in the seedling state, B. tectorum is a superior competitor. Moreover, when the natives compete intra- or interspecifically, particularly in the aquept soil, availability of N and other nutrients in their rooting zone is consistently greater than when they compete interspecifically with the exotic grasses. These data suggest the exotics are able to co-opt nutrients in the rooting zone of the natives and perhaps gain a competitive advantage.  相似文献   

18.
Darwin’s naturalization hypothesis predicts that successful invaders will tend to differ taxonomically from native species in recipient communities because less related species exhibit lower niche overlap and experience reduced biotic resistance. This hypothesis has garnered substantial support at coarse scales. However, at finer scales, the influence of traits and niche use on invasibility and invader impacts is poorly understood. Within grasslands of western Montana, USA, we compared morphological and phenological traits for five top exotic invasive forbs and five dominant native forbs using multivariate techniques to examine niche separation between exotics and natives. Exotic forbs differed from native forbs in multivariate space. Phenologically, native forbs synchronized vegetative growth with bolting and flowering early in spring. In contrast, exotics initiated vegetative growth concurrent with natives but bolted and flowered later. Morphologically, vegetative growth of exotics was three times shorter and narrower, but flowering stem growth was 35% taller and 65% wider than the natives. Collectively, these patterns suggest different strategies of resource uptake and allocation. Additionally, following wildfire, survival was four times higher for exotics compared to natives, and three times more of the surviving exotics flowered. The exotics we examined appeared to be exploiting an empty community-level niche. The resulting pattern of trait differences between exotics and natives suggests a predictable pattern of invasion and a predictable trajectory of community change. Our results illustrate how quantifying trait differences between invading exotics and natives at the within-community scale can improve understandings of community invasibility and invader impacts.  相似文献   

19.
Price JN  Berney PJ  Ryder D  Whalley RD  Gross CL 《Oecologia》2011,167(3):759-769
Dominance of invasive species is often assumed to be due to a superior ability to acquire resources. However, dominance in plant communities can arise through multiple interacting mechanisms, including disturbance. Inter-specific competition can be strongly affected by abiotic conditions, which can determine the outcome of competitive interactions. We evaluated competition and disturbance as mechanisms governing dominance of Phyla canescens (hereafter lippia), an invasive perennial forb from South America, in Paspalum distichum (perennial grass, hereafter water couch) meadows in floodplain wetlands of eastern Australia. Water couch meadows (in the study area) are listed under the Ramsar Convention due to their significance as habitat for migratory waterbirds. In the field, we monitored patterns of vegetation boundaries between the two species in response to flooding. Under controlled glasshouse conditions, we explored competitive interactions between the native water couch and lippia subject to different soil moisture/inundation regimes. We did this using a pairwise factorial glasshouse experiment that manipulated neighbor density (9 treatments) and soil moisture/inundation (4 treatments). In the field trial, inundation increased the cover of water couch. Under more controlled conditions, the invader had a competitive effect on the native species only under dry soil conditions, and was strongly inhibited by inundation. This suggests that dry conditions favor the growth of the invader and wetter (more historical) conditions favor the native grass. In this system, invader dominance is governed by altered disturbance regimes which give the invader a competitive advantage over the native species.  相似文献   

20.
Best RJ 《Oecologia》2008,158(2):319-327
Increased resource availability can facilitate establishment of exotic plant species, especially when coincident with propagule supply. Following establishment, increased resource availability may also facilitate the spread of exotic plant species if it enhances their competitive abilities relative to native species. Exotic Canada geese (Branta canadensis) introduce both exotic grass seed and nutrients to an endangered plant community on the Gulf Islands of southwestern British Columbia, Canada. I used greenhouse experiments to assess the competitive advantage of the exotic grasses relative to native and exotic forbs in this community and to test the impacts of nutrient addition from goose feces on competitive outcomes. I grew experimental communities varying in their proportion of forbs versus exotic grasses, and added goose feces as a nutrient source. I found that both native and exotic forbs produced significantly more biomass in competition with conspecifics than in competition with the grasses, and that the proportional abundance of two out of three native forbs was lowest in the combined presence of exotic grasses and nutrient addition. In a second experiment, I found that in monoculture all species of forbs and grasses showed equal growth responses to nutrients. The exotic species did not convert additional nutrients into additional biomass at a higher rate, but did germinate earlier and grow larger than the native species regardless of nutrient availability. This suggests that the exotic species may have achieved their competitive advantage partly by pre-empting resources in community mixtures. Small and late-germinating native forbs may be particularly vulnerable to competitive suppression from exotic grasses and forbs and may be at an even greater disadvantage if their competitors are benefiting from early access to additional nutrients. In combination, the input of exotic propagules and additional nutrients by nesting geese may compromise efforts to maintain native community composition in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号