首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moso bamboo is fast-growing and negatively allelopathic to neighboring plants. However, there is little information on the effects of its establishment and expansion to adjacent forest soil communities. To better understand the impacts of bamboo invasion on soil communities, the phylogenetic structure and diversity of the soil bacterial communities in moso bamboo forest, adjacent Japanese cedar plantation, and bamboo-invaded transition zone were examined using a combination of 16S rRNA gene clone libraries and bar-coded pyrosequencing techniques. Based on the number of operational taxonomic units (OTUs), Shannon diversity index, Chao1 estimator, and rarefaction analysis of both techniques, the bamboo soil bacterial community was the most diverse, followed by the transition zone, with the cedar plantation possessing the lowest diversity. The results from both techniques revealed that the Acidobacteria and Proteobacteria predominated in the three communities, though the relative abundance was different. The 250 most abundant OTUs represented about 70 % of the total sequences found by pyrosequencing. Most of these OTUs were found in all three soil communities, demonstrating the overall similarity among the bacterial communities. Nonmetric multidimensional scaling analysis showed further that the bamboo and transition soil communities were more similar with each other than the cedar soils. These results suggest that bamboo invasion to the adjacent cedar plantation gradually increased the bacterial diversity and changed the soil community. In addition, while the 10 most abundant OTUs were distributed worldwide, related sequences were not abundant in soils from outside the forest studied here. This result may be an indication of the uniqueness of this region.  相似文献   

2.
We described the bacterial diversity of walnut grove soils under organic and conventional farming. The bacterial communities of rhizospheric and nonrhizospheric soils of pecan tree (Carya illinoensis K. Koch) were compared considering two phenological stages (sprouting and ripening). Sixteen operational taxonomic units (OTUs) were identified significantly more abundant according to the plant development, only one according to the farming condition, and none according to the soil origin. The OTUs specificaly abundant according to plant development included Actinobateria (2) and Betaproteobacteria (1) related OTUs more abundant at the sprouting stage, while at the fruit ripening (FR) stage the more abundant OTUs were related to Actinobacteria (6), Alphaproteobacteria (6), and unclassified Bacteria (1). The Gaiellaceae OTU18 (Actinobacteria) was more abundant under conventional farming. Thus, our study revealed that the plant development stage was the main factor shaping the bacterial community structure, while less influence was noticed for the farming condition. The bacterial communities exhibited specific metabolic capacities, a large range of carbon sources being used at the FR stage. The identified OTUs specifically more abundant represent indicators providing useful information on soil condition, potential tools for the management of soil bacterial communities.  相似文献   

3.
Forest management often results in changes in the soil and its microbial communities. In the present study, differences in the soil bacterial community caused by forest management practices were characterized using small subunit (SSU) ribosomal RNA (rRNA) gene clone libraries. The communities were from a native hardwood forest (HWD) and two adjacent conifer plantations in a low-elevation montane, subtropical experimental forest at the Lienhuachi Experimental Forest (LHCEF) in central Taiwan. At this locality, the elevation ranges from 600 to 950 m, the mean annual precipitation is 2,200 mm, the mean annual temperature is 20.8°C, and the soil pH is 4. The conifer forests included a Cunninghamia konishii Hay (CNH) plantation of 40 years and an old growth Calocedrus formosana (Florin) Florin (CLC) forest of 80 years. A total of 476 clones were sequenced and assigned into 12 phylogenetic groups. Proteobacteria-affiliated clones (53%) predominated in the library from HWD soils. In contrast, Acidobacteria was the most abundant phylum and comprised 39% and 57% in the CLC and CNH libraries, respectively. Similarly, the most abundant OTUs in HWD soils were greatly reduced or absent in the CLC and CNH soils. Based on several diversity indices, the numbers of abundant OTUs and singletons, and rarefaction curves, the diversity of the HWD community (0.95 in evenness and Shannon diversity indices) was somewhat less than that in the CNH soils (0.97 in evenness and Shannon diversity indices). The diversity of the community in CLC soils was intermediate. The differences in diversity among the three communities may also reflect changes in abundances of a few OTUs. The CNH forest soil community may be still in a successional phase that is only partially stabilized after 40 years. Analysis of molecular variance also revealed that the bacterial community composition of HWD soils was significantly different from CLC and CNH soils (p = 0.001). These results suggest that the disturbance of forest conversion and tree species composition are important factors influencing the soil bacterial community among three forest ecosystems in the same climate.  相似文献   

4.
Soil contamination with heavy metals is a widespread problem, especially prominent on grounds lying in the vicinity of mines, smelters, and other industrial facilities. Many such areas are located in Southern Poland; they are polluted mainly with Pb, Zn, Cd, or Cu, and locally also with Cr. As for now, little is known about most bacterial species thriving in such soils and even less about a core bacterial community—a set of taxa common to polluted soils. Therefore, we wanted to answer the question if such a set could be found in samples differing physicochemically and phytosociologically. To answer the question, we analyzed bacterial communities in three soil samples contaminated with Pb and Zn and two contaminated with Cr and lower levels of Pb and Zn. The communities were assessed with 16S rRNA gene fragments pyrosequencing. It was found that the samples differed significantly and Zn decreased both diversity and species richness at species and family levels, while plant species richness did not correlate with bacterial diversity. In spite of the differences between the samples, they shared many operational taxonomic units (OTUs) and it was possible to delineate the core microbiome of our sample set. The core set of OTUs comprised members of such taxa as Sphingomonas, Candidatus Solibacter, or Flexibacter showing that particular genera might be shared among sites ~40 km distant.  相似文献   

5.
Rhizosphere communities are critical to plant and ecosystem function, yet our understanding of the role of disturbance in structuring these communities is limited. We tested the hypothesis that soil contamination with petroleum hydrocarbons (PHCs) alters spatial patterns of ecto- (ECM) and ericoid (ERM) mycorrhizal fungal and root-associated bacterial community structure in the shared rhizosphere of pine (Pinus contorta var. latifolia) and lingonberry (Vaccinium vitis-idaea) in reconstructed sub-boreal forest soils. Pine seeds and lingonberry cuttings were planted into containers with an organic (mor humus, FH or coarse woody debris, CWD) layer overlying sandy mineral horizons (Ae and Bf) of forest soils collected from field sites in central British Columbia, Canada. After 4 months, 219 mg cm-2 crude oil was applied to the soil surface of half of the systems; systems were sampled 1 or 16 weeks later. Composition, relative abundance and vertical distribution of pine ECMs were assessed using light microscopy; community profiles were generated using LH-PCR of ribosomal DNA. Multivariate analysis revealed that plant and soil factors were more important determinants of community composition than was crude oil treatment. Fungal communities differed between pine and lingonberry roots; ECM communities were structured by soil layer whereas ERM communities varied between FH and CWD soil systems. Bacterial communities varied between plants and soil layers, indicating properties of ECM and ERM rhizospheres and the soil environment influence bacterial niche differentiation. This integration of mycorrhizal and bacterial community analysis contributes to a greater understanding of forest soil sustainability in forest ecosystems potentially contaminated with PHCs.  相似文献   

6.
Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.  相似文献   

7.
The integrated biomass beneath the surface horizon in unsaturated soils is large and potentially important in nutrient and carbon cycling. Compared to surface soils, the ecology of these subsurface soils is weakly understood, particularly in terms of the composition of bacterial communities. We compared soil bacterial communities along two vertical transects by terminal restriction fragment length polymorphisms (TRFLPs) of PCR-amplified 16S rRNA genes to determine how surface and deep bacterial communities differ. DNA yield from soils collected from two Mediterranean grassland transects decreased exponentially from the surface to 4 m deep. Richness, as assessed by the number of peaks obtained after restriction with HhaI, MspI, RsaI, or HaeIII, and diversity, as assessed by the Shannon diversity indices, were lowest in the deepest sample. Lower diversity at depth is consistent with species-energy theory, which would predict relatively low diversity in the low organic matter horizons. Principal components analysis suggested that, in terms of HhaI and HaeIII generated TRFLPs, bacterial communities differed between depths. The most abundant amplicons cloned from the deepest sample contained sequences with restriction sites consistent with the largest peaks observed in TRFLPs generated from deep samples. These more abundant operational taxonomic units (OTUs) appeared related to Pseudomonas and Variovorax. Several OTUs were more related to each other than any previously described ribotypes. These OTUs showed similarity to bacteria from the divisions Actinobacteria and Firmicutes.  相似文献   

8.
Many bacteria and fungi are known to degrade cellulose in culture, but their combined response to cellulose in different soils is unknown. Replicate soil microcosms amended with [(13)C]cellulose were used to identify bacterial and fungal communities responsive to cellulose in five geographically and edaphically different soils. The diversity and composition of the cellulose-responsive communities were assessed by DNA-stable isotope probing combined with Sanger sequencing of small-subunit and large-subunit rRNA genes for the bacterial and fungal communities, respectively. In each soil, the (13)C-enriched, cellulose-responsive communities were of distinct composition compared to the original soil community or (12)C-nonenriched communities. The composition of cellulose-responsive taxa, as identified by sequence operational taxonomic unit (OTU) similarity, differed in each soil. When OTUs were grouped at the bacterial order level, we found that members of the Burkholderiales, Caulobacteriales, Rhizobiales, Sphingobacteriales, Xanthomonadales, and the subdivision 1 Acidobacteria were prevalent in the (13)C-enriched DNA in at least three of the soils. The cellulose-responsive fungi were identified as members of the Trichocladium, Chaetomium, Dactylaria, and Arthrobotrys genera, along with two novel Ascomycota clusters, unique to one soil. Although similarities were identified in higher-level taxa among some soils, the composition of cellulose-responsive bacteria and fungi was generally unique to a certain soil type, suggesting a strong potential influence of multiple edaphic factors in shaping the community.  相似文献   

9.
Organic matter decomposition in the globally widespread coniferous forests has an important role in the carbon cycle, and cellulose decomposition is especially important in this respect because cellulose is the most abundant polysaccharide in plant litter. Cellulose decomposition was 10 times faster in the fungi-dominated litter of Picea abies forest than in the bacteria-dominated soil. In the soil, the added (13)C-labelled cellulose was the main source of microbial respiration and was preferentially accumulated in the fungal biomass and cellulose induced fungal proliferation. In contrast, in the litter, bacterial biomass showed higher labelling after (13)C-cellulose addition and bacterial biomass increased. While 80% of the total community was represented by 104-106 bacterial and 33-59 fungal operational taxonomic units (OTUs), 80% of the cellulolytic communities of bacteria and fungi were only composed of 8-18 highly abundant OTUs. Both the total and (13)C-labelled communities differed substantially between the litter and soil. Cellulolytic bacteria in the acidic topsoil included Betaproteobacteria, Bacteroidetes and Acidobacteria, whereas these typically found in neutral soils were absent. Most fungal cellulose decomposers belonged to Ascomycota; cellulolytic Basidiomycota were mainly represented by the yeasts Trichosporon and Cryptococcus. Several bacteria and fungi demonstrated here to derive their carbon from cellulose were previously not recognized as cellulolytic.  相似文献   

10.
In soils, bacteria are very abundant and diverse. They are involved in various agro-ecosystem processes such as the nitrogen cycle, organic matter degradation, and soil formation. Yet, little is known about the distribution and composition of bacterial communities through the soil profile, particularly in agricultural soils, as most studies have focused only on topsoils or forest and grassland soils. In the present work, we have used bar-coded pyrosequencing analysis of the V3 region of the 16S rRNA gene to analyze bacterial diversity in a profile (depths 10, 25, and 45 cm) of a well-characterized field of winter wheat. Taxonomic assignment was carried out with the Ribosomal Database Project (RDP) Classifier program with three bootstrap scores: a main run at 0.80, a confirmation run at 0.99, and a run at 0 to gain information on the unknown bacteria. Our results show that biomass and bacterial quantity and diversity decreased greatly with depth. Depth also had an impact, in terms of relative sequence abundance, on 81 % of the most represented taxonomic ranks, notably the ranks Proteobacteria, Bacteroidetes, Actinobacteridae, and Acidobacteria. Bacterial community composition differed more strongly between the topsoil (10 and 25 cm) and subsoil (45 cm) than between levels in the topsoil, mainly because of shifts in the carbon, nitrogen, and potassium contents. The subsoil also contained more unknown bacteria, 53.96 % on the average, than did the topsoil, with 42.06 % at 10 cm and 45.59 % at 25 cm. Most of these unknown bacteria seem to belong to Deltaproteobacteria, Actinobacteria, Rhizobiales, and Acidobacteria.  相似文献   

11.
Gut bacterial communities of bumble bees are correlated with defense against pathogens. Further understanding this host-microbe association is vitally important as bumble bees are currently experiencing global population declines, potentially due in part to emergent diseases. In this study, we used pyrosequencing and community fingerprinting (ARISA) to characterize the gut microbial communities of nine bumble species from across the Bombus phylogeny. Overall, we delimited 74 bacterial taxa (operational taxonomic units or OTUs) belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, Actinobacteria, Flavobacteria and Alphaproteobacteria. Each bacterial community was taxonomically simple, containing an average of 1.9 common (relative abundance per sample > 5%) bacterial OTUs. The most abundant and prevalent (occurring in 92% of the samples) bacterial OTU, based on 16S rRNA sequences, closely matched that of the previously described Betaproteobacteria species Snodgrassella alvi. Bacteria that were first described in bee-related external environments dominated a number of gut bacterial communities, suggesting that they are not strictly dependent on the internal gut environment. The ARISA data showed a correlation between bacterial community structures and the geographic locations where the bees were sampled, suggesting that at least a subset of the bacterial species may be transmitted environmentally. Using light and fluorescent microscopy, we demonstrated that the gut bacteria form a biofilm on the internal epithelial surface of the ileum, corroborating results obtained from Apis mellifera.  相似文献   

12.
Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation types are driving bacterial community composition. MAP was a key factor that affects the composition of the soil bacteria on the Loess Plateau of China.  相似文献   

13.
The Orchidaceae are globally distributed and represent a diverse lineage of obligate mycotrophic plants. Given their dependence on symbiotic fungi for germination and/or plant development, fungal community structure in substrates is expected to influence the distribution and persistence of orchid species. Yet, simultaneous characterization of orchid mycorrhizal fungal (OMF) communities in roots and in soil is rarely reported. To explain the co-distributions of OMF in roots, orchid-occupied, and bulk soil, we characterized mycorrhizal fungi associated with Platanthera praeclara over multiple years across its entire natural distribution within the North American tallgrass prairie. Root derived OMF communities included 24 Ceratobasidiaceae and 7 Tulasnellaceae operational taxonomic units (OTUs) though the orchid exhibited high spatio-temporal specificity toward a single Ceratobasidiaceae OTU, which was strongly stable across population sizes and phenological stages of the sampled individuals. The preferred OMF OTUs were primarily restricted to orchid-occupied locations while infrequent or absent in bulk soil. Variation in soil OMF assemblies was explained most by soil moisture, magnesium, manganese, and clay. In this first study of coupled root and soil OMF communities across a threatened grassland ecosystem, we report a strong relationship, further nuanced by soil chemistry, between a rare fungus and a rare orchid.  相似文献   

14.
Long amplicon metabarcoding has opened the door for phylogenetic analysis of the largely unknown communities of microeukaryotes in soil. Here, we amplified and sequenced the ITS and LSU regions of the rDNA operon (around 1500 bp) from grassland soils using PacBio SMRT sequencing. We tested how three different methods for generation of operational taxonomic units (OTUs) effected estimated richness and identified taxa, and how well large‐scale ecological patterns associated with shifting environmental conditions were recovered in data from the three methods. The field site at Kungsängen Nature Reserve has drawn frequent visitors since Linnaeus''s time, and its species rich vegetation includes the largest population of Fritillaria meleagris in Sweden. To test the effect of different OTU generation methods, we sampled soils across an abrupt moisture transition that divides the meadow community into a Carex acuta dominated plant community with low species richness in the wetter part, which is visually distinct from the mesic‐dry part that has a species rich grass‐dominated plant community including a high frequency of Fmeleagris. We used the moisture and plant community transition as a framework to investigate how detected belowground microeukaryotic community composition was influenced by OTU generation methods. Soil communities in both moisture regimes were dominated by protists, a large fraction of which were taxonomically assigned to Ciliophora (Alveolata) while 30%–40% of all reads were assigned to kingdom Fungi. Ecological patterns were consistently recovered irrespective of OTU generation method used. However, different methods strongly affect richness estimates and the taxonomic and phylogenetic resolution of the characterized community with implications for how well members of the microeukaryotic communities can be recognized in the data.  相似文献   

15.
Forest ecosystems need to be sustainably managed, as they are major reservoirs of biodiversity, provide important economic resources and modulate global climate. We have a poor knowledge of populations responsible for key biomass degradation processes in forest soils and the effects of forest harvesting on these populations. Here, we investigated the effects of three timber-harvesting methods, varying in the degree of organic matter removal, on putatively hemicellulolytic bacterial and fungal populations 10 or more years after harvesting and replanting. We used stable-isotope probing to identify populations that incorporated 13C from labeled hemicellulose, analyzing 13C-enriched phospholipid fatty acids, bacterial 16 S rRNA genes and fungal ITS regions. In soil microcosms, we identified 104 bacterial and 52 fungal hemicellulolytic operational taxonomic units (OTUs). Several of these OTUs are affiliated with taxa not previously reported to degrade hemicellulose, including the bacterial genera Methylibium, Pelomonas and Rhodoferax, and the fungal genera Cladosporium, Pseudeurotiaceae, Capronia, Xenopolyscytalum and Venturia. The effect of harvesting on hemicellulolytic populations was evaluated based on in situ bacterial and fungal OTUs. Harvesting treatments had significant but modest long-term effects on relative abundances of hemicellulolytic populations, which differed in strength between two ecozones and between soil layers. For soils incubated in microcosms, prior harvesting treatments did not affect the rate of incorporation of hemicellulose carbon into microbial biomass. In six ecozones across North America, distributions of the bacterial hemicellulolytic OTUs were similar, whereas distributions of fungal ones differed. Our work demonstrates that diverse taxa in soil are hemicellulolytic, many of which are differentially affected by the impact of harvesting on environmental conditions. However, the hemicellulolytic capacity of soil communities appears resilient.  相似文献   

16.
To gain insight into the factors driving the structure of bacterial communities in soil, we applied real-time PCR, PCR-denaturing gradient gel electrophoreses, and phylogenetic microarray approaches targeting the 16S rRNA gene across a range of different land usages in the Netherlands. We observed that the main differences in the bacterial communities were not related to land-use type, but rather to soil factors. An exception was the bacterial community of pine forest soils (PFS), which was clearly different from all other sites. PFS had lowest bacterial abundance, lowest numbers of operational taxonomic units (OTUs), lowest soil pH, and highest C : N ratios. C : N ratio strongly influenced bacterial community structure and was the main factor separating PFS from other fields. For the sites other than PFS, phosphate was the most important factor explaining the differences in bacterial communities across fields. Firmicutes were the most dominant group in almost all fields, except in PFS and deciduous forest soils (DFS). In PFS, Alphaproteobacteria was most represented, while in DFS, Firmicutes and Gammaproteobacteria were both highly represented. Interestingly, Bacillii and Clostridium OTUs correlated with pH and phosphate, which might explain their high abundance across many of the Dutch soils. Numerous bacterial groups were highly correlated with specific soil factors, suggesting that they might be useful as indicators of soil status.  相似文献   

17.
Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite'' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.  相似文献   

18.
Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 1010 16S rRNA gene copies per gram of wet soil in both wetlands, with 108 pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.  相似文献   

19.
Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.  相似文献   

20.
Large-scale marshland reclamation can cause substantial changes to the soil fungal community by disturbances associated with the growth of crop plants and by the addition of fertilizers and pesticides. In this study, high-throughput sequencing of the fungal-specific internal transcribed spacer (ITS) gene region was used to identify fungal taxa. We analyzed the variation in soil fungi diversity and community composition in marshland, paddy, and farmland corn soils, and investigated the relationship between soil fungal community composition and soil physicochemical characteristics to quantify the effect of large-scale reclamation on marshland soil environment in the Sanjiang Plain, northeast China. Marshland soil contained most of the 1997 operational taxonomic units (OTUs) found across all sites (1241), while paddy soil had only 614 OTUs and farmland corn soil 817 OTUs. All reclaimed lands presented a decline in richness and diversity of soil fungi at the OTU level, and soil fungal richness was significantly different between marshland and reclaimed sites (P < 0.05), although it did not differ significantly between marshland and farmland corn sites. Additionally, soil fungal community composition showed different trends and structure after the reclamation. One-way analysis of variance showed Basidiomycota, Zygomycota, Glomeromycota, and Chytridiomycota composition differed significantly between marshland and reclaimed sites (P < 0.05). Nine dominant genera (relative abundance >1.5% in at least one site) and many unclassified genera showed significant variation between marshland and reclaimed sites, including Blumeria, Tomentella, Peziza, Hypholoma, Zopfiella, Mrakia, and Fusarium. Soil fungal community composition and diversity were affected by soil moisture, pH, total carbon (C), available nitrogen (N), soil organic carbon, soil dissolved organic carbon, and C/N (the ratio of total carbon to total nitrogen). The present results contribute to understanding the fungal community in marshland ecosystems, and the role of environmental variability as a predictor of fungal community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号