首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Arabidopsis genome encodes 29 AHL (AT-hook motif nuclear localized) proteins, but the function for most of them remains unknown. We report here a study of the AHL22 gene, which was originally identified as a gain-of-function allele that enhanced the phenotype of the cry1 cry2 mutant. AHL22 is a nuclear protein with the binding activity for an AT-rich DNA sequence. AHL22 overexpression delayed flowering and caused a constitutive photomorphogenic phenotype. The loss-of-function AHL22 mutant showed no clear phenotype on flowering, but slightly longer hypocotyls. However, silencing four AHL genes (AHL22, AHL18, AHL27, and AHL29) resulted in early flowering and enhanced ahl22-1 mutant phenotype on the growth of hypocotyls, suggesting genetic redundancy of AHL22 with other AHL genes on these plant developmental events. Further analysis showed that AHL22 controlled flowering and hypocotyl elongation might result from primarily the regulation of FT and PIF4 expression, respectively.  相似文献   

3.
Brucella quorum sensing has been described as an important regulatory system controlling crucial virulence determinants such as the VirB type IV secretion system and the flagellar genes. However, the basis of quorum sensing, namely the production of autoinducers in Brucella has been questioned. Here, we report data obtained from the use of a genetic tool allowing the in situ detection of long-chain N-acyl-homoserine lactones (AHL) activity at single bacterium level in Brucella melitensis. These data are consistent with an intrinsic production of AHL by B. melitensis in low concentration both during in vitro growth and macrophage infection. Moreover, we identified a protein, named AibP, which is homologous to the AHL-acylases of various bacterial species. In vitro and during infection, expression of aibP coincided with a decrease in endogenous AHL activity within B. melitensis, suggesting that AibP could efficiently impair AHL accumulation. Furthermore, we showed that deletion of aibP in B. melitensis resulted in enhanced virB genes expression and VirB8 production as well as in a reduced flagellar genes expression and production of FlgE (hook protein) and FliC (flagellin) in vitro. Altogether, these results suggest that AHL-dependent quorum sensing and AHL-quorum quenching coexist in Brucella, at least to regulate its virulence.  相似文献   

4.
《Process Biochemistry》2010,45(12):1944-1948
N-Acyl homoserine lactone (AHL) is a widespread quorum sensing signal molecule in Gram-negative bacteria and has an important role in many biological processes. However, it is still poorly understood whether or not AHL is present in pollutant treatment processes and further, what its role is in biodegradation processes. In this work, an environmental isolate of Pseudomonas aeruginosa CGMCC 1.860 that is an aromatic degrader and AHL producer was selected. The AHL plate bioassay indicated that AHL was produced by this strain during biodegradation of aromatic compounds including phenol, benzoate, p-hydroxy-benzoate, salicylate, and naphthalene. The AHLs were identified as N-butyryl-l-homoserine lactone (BHL) and N-hexanoyl-l-homoserine lactone (HHL) by using thin layer chromatography (TLC) and high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry (HPLC–APCI-MS/MS) analyses. Furthermore, phenol biodegradation was improved by exogenously added AHL extracts or by endogenously over-produced AHLs, repressed by abolishment of AHLs production, and not affected by the addition of extracts without AHLs. The results indicated that AHL was involved in the process of biodegradation of pollutants.  相似文献   

5.
Bacterial persister cells are a small population of dormant cells that are tolerant to essentially all antibiotics. Recently, we reported that a quorum sensing (QS) inhibitor, (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8), can revert antibiotic tolerance of Pseudomonas aeruginosa persister cells. To better understand this phenomenon, several synthetic brominated furanones with similar structures were compared for their activities in persister control and inhibition of acyl-homoserine lactone (AHL) mediated QS. The results show that some other furanones in addition to BF8 are also AHL QS inhibitors and can revert antibiotic tolerance of P. aeruginosa PAO1 persister cells. However, not all QS inhibiting BFs can revert persistence at growth non-inhibitory concentrations, suggesting that QS inhibition itself is not sufficient for persister control.  相似文献   

6.
Acylated homoserine lactones (AHLs) are self-generated signal molecules that mediate population density-dependent gene expression (quorum sensing) in a variety of Gram-negative bacteria. These signal molecules diffuse from bacterial cells and accumulate in the medium as a function of cell growth. In selected foods AHLs contribute to product spoilage. As different bacterial species produce AHL analogs that differ in length of the N-acyl chain, ranging from 4 to 14 carbons and in the substitution at the C-3 position of the side chain (i.e., oxo or hydroxyl group), the suitability and applicability of a gas chromatography-mass spectrometry direct method for characterizing trace amounts of AHLs was evaluated using N-heptanoyl-homoserine lactone as internal standard. Crude cell-free supernatants of bacterial cultures of Aeromonas hydrophila, Aeromonas salmonicida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Yersinia enterocolitica, and Serratia liquefaciens were screened for AHL production in selected ion monitoring mode, using the prominent fragment at m/z 143. The observed profiles of distinguishable N-acyl-homoserine lactones occurring in bacterial extracts were compared and discussed. The presence of a labile 3-oxo-hexanoylhomoserine lactone was evidenced but serious difficulties arose in estimating its concentration as thermal degradation occurs during the gas chromatographic separation. Its electron impact mass spectra was, however, given and interpreted.  相似文献   

7.
In studies carried on in bacteriological media with selected cultures, definite repressive effects were noted on the growth of the Staphylococcus population by a mixture of saprophytic, psychrophilic bacterial species. This repressive effect became more pronounced as the relative proportion of the bacterial population which was staphylococcal became smaller. A varied saprophytic bacterial flora of some numbers apparently would offer definite protection to foods through repression of staphylococcal growth and by rendering the food inedible before the rise of appreciable numbers of staphylococci. It would appear that at the optimal temperature for staphylococcal growth, staphylococci could multiply rapidly in the mixed population due to the comparative shortness of the generation time of this species and because of the lengthened lag phase of the saprophytic bacterial species at this elevated temperature, especially when only cultures having psychrophilic characteristics were present. This temperature is substantially above that encountered in practical experience. With the passage of time, the staphylococcal population was completely overgrown by the saprohytes present. This effect might be eliminated in the presence of psychrophilic and mesophilic, saprophytic species. The repressive effect of competition by saprophytic, psychrophilic organisms is extremely effective up to room temperature on the staphylococcal population. Even when significant staphylococcal populations were achieved in the artificial media, such tremendous numbers of saprophytes were obtained either earlier or at the same time so that a frozen food containing this population would be organoleptically unacceptable due to the degradative action of enzymes from the saprophytic psychrophile population.  相似文献   

8.
We developed a model of the population dynamic interaction between an insect and a pathogenic bacterium motivated by study of Serratia entomophila, a commercially exploited pathogen of the New Zealand grass grub (Costelytra zealandica). The bacterium is able to reproduce saprophytically, though it competes for saprophytic substrates with non-pathogenic strains, which appear to be superior competitors, probably because they lack a plasmid that carries genes required for pathogenicity. The effect of saprophytism and competition on the invasion criterion (R0), short-term dynamics and long-term dynamics are described. Saprophytism can reduce (possibly to zero) the host threshold at which the pathogen can invade, though this reduction is less when there is competition with non-pathogenic strains. In a model of short-term population dynamics designed to mimic the application of bacteria to a host epizootic, saprophytism enhances the reduction in host density, though again this is tempered by competition with non-pathogens. In the long term, a pathogen that can develop saprophytically can drive its host to extinction in the absence of competition with non-pathogens. When the latter are present, host extinction is prevented. The addition of saprophytic reproduction can stabilize an otherwise unstable host–pathogen model, but we were unable to find a stable equilibrium given the further addition of a wholly saprophytic bacterial strain. The model suggests that enhancing or selecting for saprophytic ability could be a way of improving biological control.  相似文献   

9.

Background

Turf soil bacterial isolate Delftia sp. VM4 can degrade exogenous N-acyl homoserine lactone (AHL), hence it effectively attenuates the virulence of bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum strain BR1 (Pcc BR1) as a consequence of quorum sensing inhibition.

Methodology/Principal Findings

Isolated Delftia sp. VM4 can grow in minimal medium supplemented with AHL as a sole source of carbon and energy. It also possesses the ability to degrade various AHL molecules in a short time interval. Delftia sp. VM4 suppresses AHL accumulation and the production of virulence determinant enzymes by Pcc BR1 without interference of the growth during co-culture cultivation. The quorum quenching activity was lost after the treatment with trypsin and proteinase K. The protein with quorum quenching activity was purified by three step process. Matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) and Mass spectrometry (MS/MS) analysis revealed that the AHL degrading enzyme (82 kDa) demonstrates homology with the NCBI database hypothetical protein (Daci_4366) of D. acidovorans SPH-1. The purified AHL acylase of Delftia sp. VM4 demonstrated optimum activity at 20–40°C and pH 6.2 as well as AHL acylase type mode of action. It possesses similarity with an α/β-hydrolase fold protein, which makes it unique among the known AHL acylases with domains of the N-terminal nucleophile (Ntn)-hydrolase superfamily. In addition, the kinetic and thermodynamic parameters for hydrolysis of the different AHL substrates by purified AHL-acylase were estimated. Here we present the studies that investigate the mode of action and kinetics of AHL-degradation by purified AHL acylase from Delftia sp. VM4.

Significance

We characterized an AHL-inactivating enzyme from Delftia sp. VM4, identified as AHL acylase showing distinctive similarity with α/β-hydrolase fold protein, described its biochemical and thermodynamic properties for the first time and revealed its potential application as an anti-virulence agent against bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum based on quorum quenching mechanism.  相似文献   

10.
The leaf of Aurea helianthus (A. helianthus Jinhuakui) is popularly used in China traditional medicine, however, scientific evidence on its antioxidant properties rarely studied. In this study, biological activities of A. helianthus leave’s 80% ethanol extract (AHL) were investigated. The measured total polyphenol and flavonoid content of AHL was 184.24 ± 5.01 mg GAE/g and 102.53 ± 0.98 mg NAR/g. AHL showed the highest α, α-diphenyl-β-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS) radical scavenging activities of 98.30 ± 0.18% at 1000 µg/mL. DPPH and ABTS radical scavenging activities significantly increased in a AHL concentration-dependent manner. AHL treatment significantly suppressed the generation of pro-inflammatory mediators, including nitric oxide (NO), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. AHL demonstrated strong anti-inflammatory activity that reduced NO production in LPS-stimulated RAW 264.7 cells. To test the potential protective effect of AHL, the antioxidant capacity, on the cell growth, viability of a human hepatoma cell (HepG2) and Raw 264.7 cell were investigated. AHL also enhanced cytotoxicity on the proliferation of HepG2 cells and was capable of inhibiting 56% against LPS at 400 µg/mL. The results of this study the potential of AHL as an excellent antioxidant substance for inhibiting inflammatory mediators. Therefore, AHL may be used as a therapeutic approach to various inflammatory diseases.  相似文献   

11.
In gram-negative bacteria, many important changes in gene expression and behavior are regulated in a population density-dependent fashion by N-acyl homoserine lactone (AHL) signal molecules. Exudates from pea (Pisum sativum) seedlings were found to contain several separable activities that mimicked AHL signals in well-characterized bacterial reporter strains, stimulating AHL-regulated behaviors in some strains while inhibiting such behaviors in others. The chemical nature of the active mimic compounds is currently unknown, but all extracted differently into organic solvents than common bacterial AHLs. Various species of higher plants in addition to pea were found to secrete AHL mimic activities. The AHL signal-mimic compounds could prove to be important in determining the outcome of interactions between higher plants and a diversity of pathogenic, symbiotic, and saprophytic bacteria.  相似文献   

12.
13.
We studied the role of bacterial secondary metabolites in the context of grazing protection against protozoans. A model system was used to examine the impact of violacein-producing bacteria on feeding rates, growth, and survival of three common bacterivorous nanoflagellates. Freshwater isolates of Janthinobacterium lividum and Chromobacterium violaceum produced the purple pigment violacein and exhibited acute toxicity to the nanoflagellates tested. High-resolution video microscopy revealed that these bacteria were ingested by the flagellates at high rates. The uptake of less than three bacteria resulted in rapid flagellate cell death after about 20 min and cell lysis within 1 to 2 h. In selectivity experiments with nontoxic Pseudomonas putida MM1, flagellates did not discriminate against pigmented strains. Purified violacein from cell extracts of C. violaceum showed high toxicity to nanoflagellates. In addition, antiprotozoal activity was found to positively correlate with the violacein content of the bacterial strains. Pigment synthesis in C. violaceum is regulated by an N-acylhomoserine lactone (AHL)-dependent quorum-sensing system. An AHL-deficient, nonpigmented mutant provided high flagellate growth rates, while the addition of the natural C. violaceum AHL could restore toxicity. Moreover, it was shown that the presence of violacein-producing bacteria in an otherwise nontoxic bacterial diet considerably inhibited flagellate population growth. Our results suggest that violacein-producing bacteria possess a highly effective survival mechanism which may exemplify the potential of some bacterial secondary metabolites to undermine protozoan grazing pressure and population dynamics.  相似文献   

14.
A novel degenerated primer set was designed to amplify acyl homoserine lactone (AHL) synthetase genes from members of the family Rhizobiaceae. The primer set successfully amplified AHL synthetase genes from pure cultures of AHL producers from Rhizobiaceae, but not from AHL producers out of the Rhizobiaceae family, indicating the specificity of this primer set to the Rhizobiaceae family. An inoculation experiment showed that the minimal detectable concentration of AHL producers from the soil was around 2.5 × 107 CFU/g soil. When applying to environmental samples, 7 and 14 different genotypes of AHL synthetase genes were identified in the rhizosphere of Glycine max and Vigna unguiculata, respectively, which revealed complicated and unknown AHL-based quorum-sensing networks in the rhizosphere. This is the first primer set that covers diverse AHL synthetase genes from different genera. It will be a useful culture-independent approach for better understanding of the ecological significance of QS in natural habitats.  相似文献   

15.
16.
The focal intent of this study was to find out an alternative strategy for the antibiotic usage against bacterial infections. The quorum sensing inhibitory (QSI) activity of marine sponges collected from Palk Bay, India was evaluated against acyl homoserine lactone (AHL) mediated violacein production in Chromobacterium violaceum (ATCC 12472), CV026 and virulence gene expressions in clinical isolate Serratia marcescens PS1. Out of 29 marine sponges tested, the methanol extracts of Aphrocallistes bocagei (TS 8), Haliclona (Gellius) megastoma (TS 25) and Clathria atrasanguinea (TS 27) inhibited the AHL mediated violacein production in C. violaceum (ATCC 12472) and CV026. Further, these sponge extracts inhibited the AHL dependent prodigiosin pigment, virulence enzymes such as protease, hemolysin production and biofilm formation in S. marcescens PS1. However, these sponge extracts were not inhibitory to bacterial growth, which reveals the fact that the QSI activity of these extracts was not related to static or killing effects on bacteria. Based on the obtained results, it is envisaged that the marine sponges could pave the way to prevent quorum sensing (QS) mediated bacterial infections.  相似文献   

17.
Bioluminescence is a common phenotype in marine bacteria, such as Vibrio and Photobacterium species, and can be quorum regulated by N-acylated homoserine lactones (AHLs). We extracted a molecule that induced a bacterial AHL monitor (Agrobacterium tumefaciens NT1 [pZLR4]) from packed cod fillets, which spoil due to growth of Photobacterium phosphoreum. Interestingly, AHLs were produced by 13 nonbioluminescent strains of P. phosphoreum isolated from the product. Of 177 strains of P. phosphoreum (including 18 isolates from this study), none of 74 bioluminescent strains elicited a reaction in the AHL monitor, whereas 48 of 103 nonbioluminescent strains did produce AHLs. AHLs were also detected in Aeromonas spp., but not in Shewanella strains. Thin-layer chromatographic profiles of cod extracts and P. phosphoreum culture supernatants identified a molecule similar in relative mobility (Rf value) and shape to N-(3-hydroxyoctanoyl)homoserine lactone, and the presence of this molecule in culture supernatants from a nonbioluminescent strain of P. phosphoreum was confirmed by high-performance liquid chromatography-positive electrospray high-resolution mass spectrometry. Bioluminescence (in a non-AHL-producing strain of P. phosphoreum) was strongly up-regulated during growth, whereas AHL production in a nonbioluminescent strain of P. phosphoreum appeared constitutive. AHLs apparently did not influence bioluminescence, as the addition of neither synthetic AHLs nor supernatants delayed or reduced this phenotype in luminescent strains of P. phosphoreum. The phenotypes of nonbioluminescent P. phosphoreum strains regulated by AHLs remains to be elucidated.  相似文献   

18.
19.
20.
Plant lectins are gaining interest because of their interesting biological properties. Several Adenia species, that are being used in traditional medicine to treat many health ailments have shown presence of lectins or carbohydrate binding proteins. Here, we report the purification, characterization and biological significance of N-Acetyl galactosamine specific lectin from Adenia hondala (AHL) from Passifloraceae family. AHL was purified in a single step by affinity chromatography on asialofetuin Sepharose 4B column, characterized and its fine sugar specificity determined by glycan array analysis. AHL is human blood group non specific and also agglutinates rabbit erythrocytes. AHL is a glycoprotein with 12.5% of the carbohydrate, SDS-PAGE, MALDI-TOF-MS and ESI-MS analysis showed that AHL is a monomer of 31.6 kDa. AHL is devoid of DNase activity unlike other Ribosome inactivating proteins (RIPs). Glycan array analysis of AHL revealed its highest affinity for terminal lactosamine or polylactosamine of N- glycans, known to be over expressed in hepatocellular carcinoma and colon cancer. AHL showed strong binding to human hepatocellular carcinoma HepG2 cells with MFI of 59.1 expressing these glycans which was effectively blocked by 93.1% by asialofetuin. AHL showed dose and time dependent growth inhibitory effects on HepG2 cells with IC50 of 4.8 μg/ml. AHL can be explored for its clinical potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号