首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell yields of Rhodopseudomonas palustris grown photoheterotrophically in pyruvate-mineral salts medium were increased by the photooxidation of added thiosulfate. However, thiosulfate had no effect on cell yields of cultures grown aerobically in darkness, although thiosulfate was also oxidized. The presence of thiosulfate increased photosynthetic cell yields on a variety of other organic substrates. Growth of cells in thiosulfate-containing medium, or the addition of thiosulfate to cells grown in thiosulfate-free medium, induced the formation of a thiosulfate-oxidizing system which quantitatively photooxidized thiosulfate to sulfate. R. palustris grew photoautotrophically with thiosulfate as an oxidizable substrate. Large amounts of supplemental bicarbonate carbon were incorporated when cells were grown photosynthetically in pyruvate-thiosulfate medium. Cells harvested after photoautotrophic or photoheterotrophic growth in fumarate-thiosulfate medium fixed (14)CO(2) at an 8- to 10-fold greater rate when provided with thiosulfate. The evolution of (14)CO(2) from pyruvate-1-(14)C during photoassimilation by R. palustris was greatly suppressed by the presence of thiosulfate. The increase in photoheterotrophic cell yields of R. palustris caused by the oxidation of thiosulfate may result from assimilation of substrate carbon which is normally evolved as carbon dioxide.  相似文献   

2.
During heterotrophic growth on acetate, in batch culture, the autotrophic growth potential of Thiobacillus A2, i.e. the capacity to oxidize thiosulfate and to fix carbon dioxide via the Calvin cycle, was completely repressed. The presence of thiosulfate in a batch culture with acetate as the organic substrate partly released the repression of the thiosulfate oxidizing system. Cultivation of the organism in continuous culture at a dilution rate of 0.05 h-1 with different concentration ratios of thiosulfate and acetate in the reservoir medium led to mixotrophic growth under dual substrate limitation. Growth on the different mixtures of acetate and thiosulfate yielded upto 30% more cell dry weight than predicted from the growth yields on comparable amounts of these substrates separately. The extent to which the carbon dioxide fixation capacity and the maximum thiosulfate and acetate oxidation capacity are repressed appeared to be a function of the thiosulfate to acetate concentration ratio in the reservoir medium. The results of 14C-acetate assimilation experiments and of gas-analysis demonstrated that the extent to which acetate was assimilated depended also on the substrate ratio in the inflowing medium. Under the different growth conditions surprisingly little variation was found in some tri-carboxylic acid cycle enzyme activities. Cultivation of T. A2 at different growth rates with a fixed mixture of thiosulfate (18 mM) and acetate (11 mM) in the medium, showed that dual substrate limitation occured at dilution rates ranging from 0.03–0.20 h-1.Abbreviations PPO 2,5-diphenoloxazol - RubPCase Ribulose-1,5-bisphophate carboxylase - Tris tris (hydroxymethyl) aminomethane - EDTA ethylenediaminetetra-acetic acid  相似文献   

3.
1. It is shown that Sulfomonas thiooxidans oxidizes elementary sulfur completely to sulfuric acid. Sodium thiosulfate is oxidized by this organism completely to sulfate. Sulfomonas thiooxidans differs, in this respect, from various other sulfur-oxidizing bacilli which either produce elementary sulfur, from the thiosulfate, or convert it into sulfates and persulfates. 2. The organism derives its carbon from the CO2 of the atmosphere, but is incapable of deriving the carbon from carbonates or organic matter. 3. The S:C, or ratio between the amount of sulfur oxidized to sulfate and amount of carbon assimilated chemosynthetically from the CO2 of the atmosphere, is, with elementary sulfur as a source of energy, 31.8, and with thiosulfate 64.2. The higher ratio in the case of the thiosulfate is due to the smaller amount of energy liberated in the oxidation of sulfur compound than in the elementary form. 4. Of the total energy made available in the oxidation of the sulfur to sulfuric acid, only 6.65 per cent is used by the organism for the reduction of atmospheric CO2 and assimilation of carbon. 5. Sulfates do not exert any injurious effect upon sulfur oxidation by Sulfomonas thiooxidans. Any effect obtained is due to the cation rather than the sulfate radical. Nitrates exert a distinctly injurious action both on the growth and respiration of the organism. 6. There is a definite correlation between the amount of sulfur present and velocity of oxidation, very similar to that found in the growth of yeasts and nitrifying bacteria. Oxidation reaches a maximum with about 25 gm. of sulfur added to 100 cc. of medium. However, larger amounts of sulfur have no injurious effect. 7. Dextrose does not exert any appreciable injurious effect in concentrations less than 5 per cent. The injurious effect of peptone sets in at 0.1 per cent concentration and brings sulfur oxidation almost to a standstill in 1 per cent concentration. Dextrose does not exert any appreciable influence upon sulfur oxidation and carbon assimilation from the carbon dioxide of the atmosphere. 8. Sulfomonas thiooxidans can withstand large concentrations of sulfuric acid. The oxidation of sulfur is affected only to a small extent even by 0.25 molar initial concentration of the acid. In 0.5 molar solutions, the injurious effect becomes marked. The organism may produce as much as 1.5 molar acid, without being destroyed. 9. Growth is at an optimum at a hydrogen ion concentration equivalent to pH 2.0 to 5.5, dropping down rapidly on the alkaline side, but not to such an extent on the acid, particularly when a pure culture is employed. 10. Respiration of the sulfur-oxidizing bacteria can be studied by using the filtrate of a vigorously growing culture, to which a definite amount of sulfur is added, and incubating for 12 to 24 hours.  相似文献   

4.
Rates of carbon dioxide assimilation and methane oxidation were determined in various zones of the Rainbow Hydrothermal Field (36 degrees N) of the Mid-Atlantic Ridge. In the plume above the hydrothermal field, anomalously high methane content was recorded; the microbial population density (up to 10(5) cells/ml) was an order of magnitude higher than the background values; and the CO2 assimilation rate varied from 0.01 to 1.1 micrograms C/(1 day). Based on the data on CO2 assimilation, the production of organic carbon due to bacterial chemosynthesis in the plume was calculated to be 930 kg/day or 340 tons/year (about 29% of the organic carbon production in the photic zone). In the black smoke above active smokers, the microbial population density was as high as 10(6) cells/ml; the rate of CO2 assimilation made up 5-10 micrograms C/(1 day); the methane oxidation rate varied from 0.15 to 12.7 mu/(1 day); and the methane concentration ranged from 1.05 to 70.6 mu/l. In bottom sediments enriched with sulfides, the rate of CO2 assimilation was at least an order of magnitude higher than in oxidized metal-bearing sediments. At the base of an active construction site, whitish sediment was found, which was characterized by a methane high content (92 mu/dm3) and a high rate of oxidation (1.7 mu/(dm3 day)).  相似文献   

5.
Summary A comparison of light and dark short-term incorporation of [14C]-carbon dioxide by Rhodospirillum rubrum grown in turbidostat continuous-flow culture at two different steady states on medium containing malate has shown that the labelling of phosphate esters was the main light-dependent process. Thus, the reductive pentose phosphate cycle appears to be the major pathway of carbon dioxide assimilation in the light under these growth conditions.The labelling of glutamate was also light-dependent and was most marked in the most rapidly growing steady state culture.The assimilated [14C]carbon was transferred to metabolites of the tricarboxylic acid cycle, particularly C4-dicarboxylic acids, and the transfer involved additional carboxylations which were not light-dependent. The activity of these reactions accounted for initial high rates of carbon dioxide assimilation in the dark.In the dark assimilated [14C]carbon accumulated in succinate.  相似文献   

6.
Chemical and key microbiological processes (assimilation of carbon dioxide, oxidation and formation of methane, and sulfate reduction) occurring at the boundary between the aerobic-anaerobic interface in the deep-water zone of the Black Sea were investigated. Measurements were taken at depths from 90 to 300 m at intervals of 5-10 m. The integral rate of the dark assimilation of carbon dioxide varied from 120 to 207 mg C/(m2 day) with a maximum at the boundary of cyclonic currents. The organic matter (OM) formed from methane comprised less than 5% of the OM formed from carbon dioxide. A comparison between the rates of methane oxidation and methane production suggests that methane that is oxidized at depths from 100 to 300 m was formed in deeper water horizons. The maximum rate of sulfate reduction (1230 mg S/(m2 day)) was observed in the western halistatic region, and the minimum rate (490 mg S/(m2 day)), in the eastern halistatic region. The average rate of hydrogen sulfide production measured at three deep-sea stations amounted to 755 mg S/(m2 day), or 276 g S/(m2 year).  相似文献   

7.
Chlorella pyrenoidosa can utilize sodium acetate as a carbonsource for growth in the light. Growth proceeds under aerobicconditions both in the presence and in the absence of carbondioxide, but under anaerobic conditions only in its presence.The assimilation of acetate does not result from oxidation tocarbon dioxide followed by photosynthetic fixation because theproducts of 14C-acetate assimilation are different from theproducts of 14CO2 fixation in the presence of unlabelled acetate. In aerobic conditions 10-6 M DCMU induces a pattern of acetateassimilation in the light similar to that in the dark. Thus,in the presence of DCMU in the light, less acetate carbon isincorporated into cells, particularly into lipids, polysaccharide,and protein, and more is released as carbon dioxide than inits absence. The effect of 4 x 10-3 M MFA on acetate assimilationin the presence of 10-6 M DCMU is the same in light and dark.Acetate assimilation is unaffected by desaspidine and sodiumbisulphite. The mean generation time of C. pyrenoidosa growing on acetatein the light under aerobic conditions is 20 hours. When 10-5M DCMU is added the mean generation time is 60 hours, the sameas that for Chlorella growing on acetate in the dark. The activityof the enzymes of the glyoxylate cycle, isocitrate lyase (E.C.4.1.3.1.)and malate synthetase (E.C.4.1.3.2.) is repressed in the light,but activity of both enzymes increases markedly when DCMU isadded.  相似文献   

8.
Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10–30 s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy.  相似文献   

9.
The capability to oxidize thiosulfate was studied in 11 cultures of purple bacteria belonging to Rhodomicrobium vannielii, Rhodopseudmonas viridis, Rh. sphaeroides, Rh. capsulata, and Rhodospirillum rubrum. All the bacteria oxidized thiosulfate under aerobic conditions in the dark. The strains 2R, 8259, A1, A2 and D1 of Rh. sphaeroides oxidized thiosulfate under anaerobic conditions in the light, and the process was coupled with carbon dioxide fixation. All the strains contained thiosulfate reductase, and the majority of them possessed also the activity of thiosulfate oxidase and sulfite oxidase.  相似文献   

10.
Chemical and key microbiological processes (assimilation of carbon dioxide, oxidation and formation of methane, and sulfate reduction) occurring at the aerobic-anaerobic interface in the deep-water zone of the Black Sea were investigated. Measurements were taken at depths from 90 to 300 m at intervals of 5–10 m. The integral rate of the dark assimilation of carbon dioxide varied from 120 to 207 mg C/(m2 day) with a maximum at the boundary of cyclonic currents. The organic matter (OM) formed from methane comprised less than 5% of the OM formed from carbon dioxide. A comparison between the rates of methane oxidation and methane production suggests that methane that is oxidized at depths from 100 to 300 m was formed in deeper water horizons. The maximum rate of sulfate reduction (1230 mg S/(m2 day)) was observed in the western halistatic region, and the minimum rate (490 mg S/(m2 day)), in the eastern halistatic region. The average rate of hydrogen sulfide production measured at three deep-sea stations amounted to 755 mg S/(m2 day), or 276 g S/(m2 year).  相似文献   

11.
Oxic–anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO2) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic–anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO2 fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO2 assimilation, totaling 9.3 mmol C m−2 day−1, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L−1 day−1 were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.  相似文献   

12.
Various cultures (previously described), which oxidize thiosulfate in mineral media have been studied in an attempt to determine the products of oxidation. The transformation of sodium thiosulfate by Cultures B, T, and K yields sodium tetrathionate and sodium hydroxide; secondary chemical reactions result in the accumulation of some tri- and pentathionates, sulfate, and elemental sulfur. As a result of the initial reaction, the pH increases; the secondary reactions cause a drop in pH after this initial rise. The primary reaction yields much less energy than the reactions effected by autotrophic bacteria. No significant amounts of assimilated organic carbon were detected in media supporting representatives of these cultures. It is concluded that they are heterotrophic bacteria. Th. novellus oxidizes sodium thiosulfate to sodium sulfate and sulfuric acid; the pH drops progressively with growth and oxidation. Carbon assimilation typical of autotrophic bacteria was detected; the ratio of sulfate-sulfur formed to carbon assimilated was 56:1. It is calculated that 5.1 per cent of the energy yielded by the oxidation of thiosulfate is accounted for in the organic cell substance synthesized from inorganic materials. This organism is a facultative autotroph. The products of oxidation of sodium thiosulfate by Th. thioparus are sodium sulfate, sulfuric acid, and elemental sulfur; the ratio of sulfate sulfur to elemental sulfur is 3 to 2. The pH decreases during growth and oxidation. The elemental sulfur is produced by the primary reaction and is not a product of secondary chemical changes. The bacterium synthesizes organic compounds from mineral substances during growth. The ratio of thiosulfate-sulfur oxidized to carbon assimilated was 125:1, with 4.7 per cent of the energy of oxidation recovered as organic cell substance. This bacterium is a strict autotroph.  相似文献   

13.
Using a rapid spectrographic method of carbon dioxide measurement previously described by McAlister (1937) further studies on the time course of photosynthesis in the higher plant, wheat, variety Marquis, are herein reported. Of major importance in this work is the discovery of a pick-up of carbon dioxide in darkness immediately following a high rate of photosynthesis (see Figs. 3 and 4). This pick-up is believed to be due to the action of a carbon dioxide-combining intermediate; i.e., the "acceptor molecule" for carbon dioxide in photosynthesis. The conditions under which this phenomenon has so far been observed indicate that the intermediate is formed in relatively large quantities during the actual process of photosynthesis and not before. That the intermediate is chlorophyllous in nature is suggested by a simple stoichiometry of the order of unity that is found to exist between the number of carbon dioxide molecules taken up and the total number of chlorophyll molecules present in the plant. This is in opposition to the idea of a large photosynthetic unit of some 2000 chlorophyll molecules operating together in the reduction of 1 carbon dioxide molecule. Further studies of the induction phase under various conditions of previous dark rest and of carbon dioxide and light limitation are herein described. Employing the simple hypothesis that the number of carbon dioxide molecules not reduced during the induction period (induction loss) gives a measure of the number of elementary photosynthetic cycles unoperative or compensated for during induction together with the experimental fact that this induction loss is of the order of the total number of chlorophyll molecules present, these latter studies also indicate, in a less direct manner, that chlorophyll participates in photosynthesis as an individual molecule and not as part of a very large multimolecular chlorophyll unit. The fast dark reaction lasting about 1 minute (Fig. 7) required to reproduce both (a) the phenomena of induction in carbon dioxide assimilation and (b) the recovery of fluorescence of chlorophyll in leaves in darkness as observed by Franck and Wood (1936), demonstrates a close relationship between the fluorescence of chlorophyll and induction in photosynthesis. The rate of respiration (carbon dioxide production) of the higher plant, wheat, was measured under intense illumination and in the absence of carbon dioxide (to suppress assimilation). This value was found to be identical with the dark respirational rate measured before and after the light period, indicating very positively the absence of any direct effect of light on respiration.  相似文献   

14.
Two species of blue-green algae Anabaena flosaquae and Oscillatoria sp. were shown to assimilate glycolic acid. In the presence of DCMU in light, approximately 50% of it wax oxidized to carbon dioxide; 90% was oxidized in the dark. Glycolate assimilation was increased fivefold by lowering the pH of the medium from 9.0 to 5.0, and the rate of uptake increased with increasing concentration of exogenous glycolate up to a saturation concentration of 12–14 mM. α-Hydroxysulfonates markedly inhibited glycolate uptake and oxidation but iso-nicotinyl hydrazide had little effect. These results indicate that glycolate oxidation occurs in vivo, but that the glycolate pathway in these algae differs some-what from that of higher plants.  相似文献   

15.
The fluidized sediment ecosystem off French Guiana is characterized by active physical reworking, diversity of electron acceptors and highly variable redox regime. It is well studied geochemically but little is known about specific microorganisms involved in its biogeochemistry. Based on the biogeochemical profiles and rate kinetics, several possible biotically mediated pathways of the carbon, sulfur and iron cycles were hypothesized. Enrichment studies were set up with a goal to culture microorganisms responsible for these pathways. Stable microbial consortia potentially capable of the following chemolithoautotrophic types were enriched from the environment and characterized: elemental sulfur/thiosulfate disproportionators, thiosulfate-oxidizing ferrihydrite and nitrate reducers, sulfide/ferrous sulfide oxidizers coupled with nitrate and microaerophilic iron oxidizers. Attempts to generate several enrichments (anoxic ammonia oxidation, and sulfide oxidizers with ferric iron or manganese oxide) were not successful. Heterotrophic sulfate and elemental sulfur reduction bacteria are prominent and dominate reductive sulfur transformations. We hypothesize that carbon dioxide fixation coupled with synthesis of organic matter happens mostly via sulfur disproportionation and sulfur species oxidation with iron oxidation playing a minor role.  相似文献   

16.
The ternary effects of transpiration rate on the rate of assimilation of carbon dioxide through stomata, and on the calculation of the intercellular concentration of carbon dioxide, are now included in standard gas exchange studies. However, the equations for carbon isotope discrimination and for the exchange of oxygen isotopologues of carbon dioxide ignore ternary effects. Here we introduce equations to take them into account. The ternary effect is greatest when the leaf-to-air vapour mole fraction difference is greatest, and its impact is greatest on parameters derived by difference, such as the mesophyll resistance to CO(2) assimilation, r(m) . We show that the mesophyll resistance to CO(2) assimilation has been underestimated in the past. The impact is also large when there is a large difference in isotopic composition between the CO(2) inside the leaf and that in the air. We show that this partially reconciles estimates of the oxygen isotopic composition of CO(2) in the chloroplast and mitochondria in the light and in the dark, with values close to equilibrium with the estimated oxygen isotopic composition of water at the sites of evaporation within the leaf.  相似文献   

17.
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport.  相似文献   

18.
Mass spectrometric analysis of gas exchange in light and dark by N-limited cells of Chlamydomonas reinhardtii indicated that ammonium assimilation was accompanied by an increase in respiratory carbon flow to provide carbon skeletons for amino acid synthesis. Tricarboxylic acid (TCA) cycle carbon flow was maintained by the oxidation of TCA cycle reductant via the mitochondrial electron transport chain. In wild-type cells, inhibitor studies and 18O2 discrimination experiments indicated that respiratory electron flow was mediated entirely via the cytochrome pathway in both the light and dark, despite a large capacity for the alternative pathway. In a cytochrome oxidase deficient mutant, or in wild-type cells in the presence of cyanide, the alternative pathway could support the increase in TCA cycle carbon flow. These different mechanisms of oxidation of TCA cycle reductant were reflected by the much greater SHAM sensitivity of ammonium assimilation by cytochrome oxidase-deficient cells as compared to wild type.  相似文献   

19.
The assimilation of 14C-sodium bicarbonate has been measured in Scenedesmus obliquus as 1) photosynthesis, 2) photoreduction (light dependent incorporation of carbon dioxide by hydrogen adapted cells under conditions where photosynthesis is inoperative), and 3) the oxyhydrogen reaction (dark assimilation of carbon dioxide by hydrogen adapted cells in an atmosphere of hydrogen and 1% oxygen). Degradation of the glucose formed in each of these reactions using the Leuconostoc technique establishes the participation of the reductive pentose phosphate cycle.  相似文献   

20.
The biological role of exogenous carbon dioxide during substrate assimilation with a various degree of reductivity is evaluated. The investigation of metabolic pathways of carbon dioxide incorporation into the metabolic processes of methaneoxidizing bacteria shows that the HCO3- ion assimilation is catalyzed by phosphoenolpyruvate carboxylase and in certain strains also by the key enzyme of autotrophic pathway of the carbon dioxide assimilation, ribulose-1,5-diphosphate carboxylase. The theoretical calculations and experimental studies indicate that exogenous carbon dioxide is a necessary participant of the metabolic processes of methane or methanol assimilation. It is also an acceptor of the excess electrons of these compounds. It is the degree of reductivity of the substrate metabolized that determines the activity of the exogenous carbon dioxide fixation by microorganisms. The carbon dioxide fixation by heterotrophic microorganisms must be considered, therefore, as a process which is mostly due to the elementary composition of the source of carbon under conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号