首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Peptide 1585 (EVLYLKPLAGVYRSLKKQLE) has a highly conserved amino-acid sequence located in the Plasmodium falciparum main merozoite surface protein (MSP-1) C-terminal region, required for merozoite entry into human erythrocytes and therefore represents a vaccine candidate for P. falciparum malaria. Original sequence-specific binding to five HLA DRB1* alleles (0101, 0102, 0401, 0701, and 1101) revealed this peptide's specific HLA DRB1*0102 allele binding. This peptide's allele-specific binding to HLA DRB1*0102 took on broader specificity for the DRB1*0101, -0401, and -1101 alleles when lysine was replaced by glycine in position 17 (peptide 5198: EVLYLKPLAGVYRSLKG(17)QLE). Binding of the identified G(10)VYRSLKGQLE(20) C-terminal register to these alleles suggests that peptide promiscuous binding relied on fitting Y(12), L(15), and G(17) into P-1, P-4, and P-6, respectively. The implications of the findings and the future of this synthetic vaccine candidate are discussed.  相似文献   

2.
Preferential HLA usage in the influenza virus-specific CTL response   总被引:5,自引:0,他引:5  
To study whether individual HLA class I alleles are used preferentially or equally in human virus-specific CTL responses, the contribution of individual HLA-A and -B alleles to the human influenza virus-specific CTL response was investigated. To this end, PBMC were obtained from three groups of HLA-A and -B identical blood donors and stimulated with influenza virus. In the virus-specific CD8(+) T cell population, the proportion of IFN-gamma- and TNF-alpha-producing cells, restricted by individual HLA-A and -B alleles, was determined using virus-infected C1R cells expressing a single HLA-A or -B allele for restimulation of these cells. In HLA-B*2705- and HLA-B*3501-positive individuals, these alleles were preferentially used in the influenza A virus-specific CTL response, while the contribution of HLA-B*0801 and HLA-A*0101 was minor in these donors. The magnitude of the HLA-B*0801-restricted response was even lower in the presence of HLA-B*2705. C1R cells expressing HLA-B*2705, HLA-A*0101, or HLA-A*0201 were preferentially lysed by virus-specific CD8(+) T cells. In contrast, the CTL response to influenza B virus was mainly directed toward HLA-B*0801-restricted epitopes. Thus, the preferential use of HLA alleles depended on the virus studied.  相似文献   

3.
HIV/AIDS is currently the leading cause of infectious disease mortality around the world. Since many alleles and/or haplotypes of HLA have been reported to be associated with progressive HIV infection, more detailed information on the HLA profile in HIV‐1 infected individuals in Chongqing, southwest China would facilitate further understanding of HIV‐1 infection, help AIDS vaccine design and the planning of effective preventive strategies. In this study, we performed 4‐digit resolution HLA‐A, B, DRB1 genotyping of 759 HIV‐1 seropositive individuals using PCR‐SSO methods. Six alleles were found at more than 10% high frequency: A*1101, A*0201, A*2402, B*4601, B*4001 and DRB1*0901. The most common 2‐ and 3‐locus haplotypes were A*0201‐B*4601, A*1101‐B*4001, A*1101‐B*4601, A*3303/1‐B*5801, A*0201‐B*4601‐DRB1*0901, A*1101‐B*4601‐DRB1*0901 and A*3303/1‐B*5801‐DRB1*0301. 690 HIV‐1 seropositive individuals with records of CD4 counts were divided into two groups: an AIDS patient group comprising 216 subjects with AIDS‐defining symptoms and CD4 counts below 200 cells/mm3 and an asymptomatic, HIV seropositive group of 474 subjects with a stable CD4 count of no less than 200 individuals. In the AIDS patient group, A*3303/1 and B*5801 alleles and the A*3303/1‐B*5801 haplotype were significantly underrepresented as compared to the HIV‐infected group, whereas A*1101‐B*4001, A*1101‐B*1502, A*2402‐B*4801 haplotypes and five common haplotypes from two groups were significantly overrepresented. HLA‐A or B and HLA‐Bw6‐Bw6 homozygotes were also overrepresented in the AIDS patients group. Our observations suggest that the presence of the B*3501 allele, A*2402‐B*4801, common 2‐locus and 3‐locus haplotypes, HLA‐A or B and Bw6‐Bw6 homozygosity may predict a poor disease outcome in HIV‐1 infection. However, HIV‐1 infected individuals who have B*5801 alleles, A*3303/1‐B*5801 haplotype and are heterozygous for Bw4‐Bw6 are more likely to be resistant to progression of AIDS in this Chinese population.  相似文献   

4.
A CTL clone that recognizes autologous tumor cells was previously isolated from the blood of a head-and-neck cancer patient. The Ag was identified as peptide FPSDSWCYF presented by autologous HLA-B*3503 molecules. This peptide was encoded by a mutated CASP-8 gene, which is implicated in the triggering of apoptosis. Here, we show that this CTL clone, which expresses a single TCR, also recognizes two unrelated peptides on allogeneic HLA-B*3501 molecules. One peptide, HIPDVITY, is encoded by squalene synthase, and the other one, QFADVIVLF, is encoded by 2-hydroxyphytanoyl-CoA lyase. Both genes are expressed ubiquitously. These antigenic peptides are processed and presented by HLA-B*3501 cells. The two HLA-B35 alleles are closely related. Our results might reinforce the notion that the recognition of allogeneic HLA molecules depends on the presence in their groove of a limited number of peptides processed from ubiquitous proteins.  相似文献   

5.
Sarcoidosis is a granulomatous disorder of unknown etiology, associated with an accumulation of CD4+ T cells and a TH1 immune response. Since previous studies of HLA associations with sarcoidosis were limited by serologic or low-resolution molecular identification, we performed high-resolution typing for the HLA-DPB1, HLA-DQB1, HLA-DRB1, and HLA-DRB3 loci and the presence of the DRB4 or DRB5 locus, to define HLA class II associations with sarcoidosis. A Case Control Etiologic Study of Sarcoidosis (ACCESS) enrolled biopsy-confirmed cases (736 total) from 10 centers in the United States. Seven hundred six (706) controls were case matched for age, race, sex, and geographic area. We studied the first 474 ACCESS patients and case-matched controls. The HLA-DRB1 alleles were differentially distributed between cases and controls (P<.0001). The HLA-DRB1*1101 allele was associated (P<.01) with sarcoidosis in blacks and whites and had a population attributable risk of 16% in blacks and 9% in whites. HLA-DRB1-F(47) was the amino acid residue most associated with sarcoidosis and independently associated with sarcoidosis in whites. The HLA-DPB1 locus also contributed to susceptibility for sarcoidosis and, in contrast to chronic beryllium disease, a non-E(69)-containing allele, HLA-DPB1*0101, conveyed most of the risk. Although significant differences were observed in the distribution of HLA class II alleles between blacks and whites, only HLA-DRB1*1501 was differentially associated with sarcoidosis (P<.003). In addition to being susceptibility markers, HLA class II alleles may be markers for different phenotypes of sarcoidosis (DRB1*0401 for eye in blacks and whites, DRB3 for bone marrow in blacks, and DPB1*0101 for hypercalcemia in whites). These studies confirm a genetic predisposition for sarcoidosis and present evidence for the allelic variation at the HLA-DRB1 locus as a major contributor.  相似文献   

6.
The DRB1, DRB3, DRB5, DQA1 and DQB1 allele polymorphisms were analysed in 3 western and 3 eastern villages of the island of Hvar using PCR-SSOP method and 12th International Workshop primers and probes. Three DQB1 alleles (*0304, *0305, *0607) detected in the population of the island of Hvar (HP) have not yet been observed in general Croatian population (GCP). Significant differences were observed between two regions of Hvar for: a) DRB1*0701 allele (p < 0.001), b) DQA1*0201 allele (p < 0.01), and c) DRB1*0101-DQA1*0101-DQB1*0501 haplotypic association (p < 0.05). Two unusual haplotypic associations, which have not yet been described in general Croatian population (GCP), DRB1*0101-DQA1*0102-DQB1*0501 and DRB1*1501-DQA1 *0102-DQB1*0604 were observed in the population from the island of Hvar (HP). Measures of genetic kinship and genetic distances revealed isolation and clusterization which coincides with the known ethnohistorical, as well as biological and biocultural data obtained from a series of previous investigations. The five studied village subpopulations formed two clusters (East-West) to which the far eastern village (with the highest rii of 0.0407) joined later, thus indicating possible impact of historical immigrations from the mainland.  相似文献   

7.
We have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date; the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D'' = .41) with DPB1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this population.  相似文献   

8.
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in the Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of the proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of the Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.  相似文献   

9.
T cell epitopes containing peptides have been recently proposed as an alternative to conventional immunotherapy of allergic diseases because they are expected to be better tolerated than allergen extracts. A principal limitation to their clinical use is that they present an important diversity, which primarily results from the polymorphism of HLA class II molecules. In Caucasian populations, however, seven alleles of the most expressed molecules (namely DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, DRB1*1101, DRB1*1301, and DRB1*1501) predominate. Peptides from allergens that would efficiently bind to them should be potential candidates for specific immunotherapy. In this paper, we have determined the peptides present in the major bee venom allergen by investigating the capacity of synthetic peptides that encompass its whole sequence to bind to each allele. Several efficient binders have been identified and are either allele-specific or common to several HLA-DR molecules. Interestingly enough, the 81-97 sequence is universal in the sense that it binds to all studied molecules. This sequence is surrounded by several active regions, which make the 76-106 sequence particularly rich of binding determinants and a good candidate for specific immunotherapy. Statistical analyses of the binding data also provide an overview of the preponderant HLA-DR alleles specificity.  相似文献   

10.
One prerequisite for developing peptide-based allergen immunotherapy is knowing the T cell epitopes of an allergen. In this study, human T cell reactivity against the major dog allergen Can f 1 was investigated to determine peptides suitable for immunotherapy. Seven T cell epitope regions (A-G) were found in Can f 1 with specific T cell lines and clones. The localization of the epitope regions shows similarities with those of the epitopes found in Bos d 2 and Rat n 1. On average, individuals recognized three epitopes in Can f 1. Our results suggest that seven 16-mer peptides (p15-30, p33-48, p49-64, p73-88, p107-122, p123-138, and p141-156), each from one of the epitope regions, show widespread T cell reactivity in the population studied, and they bind efficiently to seven HLA-DRB1 molecules (DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, DRB1*1101, DRB1*1301, and DRB1*1501) predominant in Caucasian populations. Therefore, these peptides are potential candidates for immunotherapy of dog allergy.  相似文献   

11.
CD4+CD28null T cells are present in increased numbers in the peripheral blood of patients with acute coronary syndrome. However, the triggers of expansion of these cells are unclear. Susceptibility to coronary heart disease (CHD) is strongly associated with alleles of human leukocyte antigen (HLA), but it is not equally strong in different human populations. The objective of the study was to investigate association between CD4+CD28null T cells and HLA-DRB1 alleles. The HLA alleles were determined by polymerase chain reaction with sequence-specific primers (PCR-SSP) method, in a group of CHD patients and control subjects from the same area. The number of CD4+CD28null T cells was measured using the flow cytometry technique. The HLA-DRB1*01 (RR = 4.705, P < 0.005) and DRB1*04 (RR = 3.554, P < 0.005) alleles showed the strongest association with CHD in the Chinese population, and increased numbers of CD4+CD28null T cells were found in association with HLA-DRB1*04 (17.1%) and DRB*01 (12.9%), while decreased numbers of CD4+CD28null T cells were present in subjects with DRB1*15 (0.8%). CHD in Chinese population is strongly associated with HLA-DRB1*01 and DRB1*04 haplotypes, and formation of CD4+CD28null T cells was related to HLA-DRB1*01, DRB1*04, and DRB1*15 alleles.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1)-infected individuals with HLA-B*35 allelic variants B*3502/3503/3504/5301 (B*35-Px) progress more rapidly to AIDS than do those with B*3501 (B*35-PY). The mechanisms responsible for this phenomenon are not clear. To examine whether cellular immune responses may differ according to HLA-B*35 genotype, we quantified HIV-1-specific CD8(+)-T-cell (CTL) responses using an intracellular cytokine-staining assay with specimens from 32 HIV-1-positive individuals who have B*35 alleles. Among them, 75% had CTL responses to Pol, 69% had CTL responses to Gag, 50% had CTL responses to Nef, and 41% had CTL responses to Env. The overall magnitude of CTL responses did not differ between patients bearing B*35-Px genotypes and those bearing B*35-PY genotypes. A higher percentage of Gag-specific CTL was associated with lower HIV-1 RNA levels (P = 0.009) in individuals with B*35-PY. A negative association between CTL activity for each of the four HIV antigens and viral load was observed among individuals with B*35-PY, and the association reached significance for Gag. No significant relationship between CTL activity and viral load was observed in the B*35-Px group. The relationship between total CTL activity and HIV RNA among B*35-Px carriers differed significantly from that among B*35-PY carriers (P < 0.05). The data are consistent with the hypothesis that higher levels of virus-specific CTL contribute to protection against HIV disease progression in infected individuals with B*35-PY, but not in those with B*35-Px.  相似文献   

13.
The purpose of this study was to explore the association between human leukocyte antigens (HLA)-A, -B, -C, -DRB1 and -DQB1 allele polymorphisms and different hematological diseases in Chinese groups. Retrospective analyses of HLA genotyping data in high-resolution for patients with acute myeloid leukemia (AML, 766 cases), chronic myeloid leukemia (CML, 330 cases), acute lymphoblastic leukemia (ALL, 605 cases), aplastic anemia (AA, 229 cases), myelodysplastic syndrome (MDS, 204 cases) were performed, and the susceptible or protective HLA alleles of the above-mentioned diseases were analyzed by Chi-square test and Fisher exact test with unrelated hematopoietic stem cell donors as control. The Results indicated that A*0201, B*4402, C*0701, DRB1*1201, DRB1*1401, and DQB1*0602 might be susceptible genes of AML, while A*1101, A*3303, B*5801, C*0302, DRB1*0301, DQB1*0201 and DQB1*0502 might be protective genes of AML. A*3303 might be a protective gene of CML, and DRB1*1401 might be a susceptible gene of CML. ALL's susceptible genes included A*0201, A*0210, B*5201, DRB1*1201, DRB1*1401 and DQB1*0602, but its protective genes included DQB1*0502. For AA, A*0201, A*0206, B*1511, DRB1*0901, DRB1*1401, DQB1*0303, DQB1*0602 might be susceptible genes, while A*3303, B*5801, C*0302, DRB1*1602 and DQB1*0502 might be protective genes. A*0201, A*0206, B*1511, DRB1*0901, DRB1*1401, DQB1*0303. A*0201, B*1558, B*4801, B*5201, DRB1*1401, DRB1*1501, and DQB1*0602 might be susceptible genes of MDS, and A*3303, B*4601, B*5801, C*0302, and DRB1*0901 might be protective genes of MDS. On the basis of HLA high-resolution genotyping for the first time, this study comprehensively analyzed HLA alleles associated with different hematological diseases in the Chinese population, which should provide clues for further study on the pathogenesis of these diseases.  相似文献   

14.
The frequency of dengue virus (DENV) infection has increased dramatically in the last few decades, and the lack of a vaccine has led to significant morbidity and mortality worldwide. To date, a convenient murine system to study human T cell responses to DENV has not been available. Mice transgenic for HLA are widely used to model human immune responses, and it has been shown that mouse-passaged DENV is able to replicate to significant levels in IFN-α/βR(-/-) mice. To cover a wide range of HLA phenotypes, we backcrossed IFN-α/βR(-/-) mice with HLA A*0201, A*0101, A*1101, B*0702, and DRB1*0101-transgenic mice. A DENV proteome-wide screen identified a total of 42 epitopes across all HLA-transgenic IFN-α/βR(-/-) strains tested. In contrast, only eight of these elicited responses in the corresponding IFN-α/βR(+/+) mice. We were able to identify T cell epitopes from 9 out of the 10 DENV proteins. However, the majority of responses were derived from the highly conserved nonstructural proteins NS3 and NS5. The relevance of this model is further demonstrated by the fact that most of the epitopes identified in our murine system are also recognized by PBMC from DENV-exposed human donors, and a dominance of HLA B*0702-restricted responses has been detected in both systems. Our results provide new insights into HLA-restricted T cell responses against DENV, and we describe in this study a novel murine model that allows the investigation of T cell-mediated immune mechanisms relevant to vaccine design.  相似文献   

15.
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity pulmonary disease that affects both patients with cystic fibrosis (CF) and those with asthma. HLA‐DRB1 alleles have previously been associated with ABPA–CF susceptibility; however, HLA‐DQB1 allele associations have not been clearly established. The aim of the present study was to investigate HLA class II associations in patients with ABPA–CF and determine their roles in susceptibility or protection. Patients with ABPA–CF, patients with CF without ABPA, patients with asthma without ABPA (AST), and healthy controls were included in this study. DNA was extracted by automatic extractor. HLA‐DRB1 and ‐DQB1 genotyping was performed by the Luminex PCR‐SSOP method (One Lambda, Canoga Park, CA, USA). Allele specific PCR‐SSP was also performed by high‐resolution analysis (One Lambda). Statistical analysis was performed with SSPS and Arlequin software. Both HLA‐DRB1*5:01 and ‐DRB1*11:04 alleles occurred with greater frequency in patients with ABPA–CF than in those with AST and CF and control subjects, corroborating previously published data. On the other hand, analysis of haplotypes revealed that almost all patients with ABPA–CF lacking DRB1*15:01 or DRB1*11:04 carry either DRB1*04, DRB1*11:01, or DRB1*07:01 alleles. In the HLA‐DQB1 region, the HLA‐DQB1*06:02 allele occurred more frequently in patients with ABPA–CF than in those with AST and CF and healthy controls, whereas HLA‐DQB1*02:01 occurred less frequently in patients with ABPA–CF. These data confirm that there is a correlation between HLA‐DRB1*15:01, –DRB1*11:04, DRB1*11:01, –DRB1*04 and –DRB1 * 07:01 alleles and ABPA–CF susceptibility and suggest that HLA‐DQB1*02:01 is an ABPA–CF resistance allele.  相似文献   

16.
 A comprehensive analysis was carried out of the tri-molecular complex of peptide, major histocompatibility class II molecule, and T-cell receptor (TcR) involved in the recognition of the promiscuous HA (306–318) peptide, restricted by one of two closely related HLA-DR alleles, HLA-DRB1*0101 and HLA-DRB1*0103. These two DR molecules differ by only three amino acids at positions 67, 70, and 71, in the third variable region of the DRB1 chain. None of the HA (306–318)-specific T-cell clones restricted by these two DR molecules tolerated amino acid substitution at the peptide-binding position 71, despite the fact that the substitution did not interfere with peptide binding. The majority of the DRB1*0103-restricted clones tolerated substitution of the amino acid at the TcR-contacting position 70, while the DRB1*0101-restricted T cells did not. Biased usage of TRVA and TRVB segments was observed for the DRB1*0103-restricted clones; in contrast, apparently random usage was seen in the DRB1*0101-restricted T cells. Finally, limiting dilution analysis revealed a lower frequency of T cells reactive with the HA peptide in a DRB1*0103 compared with a DRB1*0101 individual. Taken together these data suggest that biased TcR gene usage may reflect a relatively low precursor frequency of T cells, and the need for clonal expansion of a limited set of high avidity T cells. Received: 7 August 1998 / Revised: 19 November 1998  相似文献   

17.
HLA class I and class II associations were examined in relation to measles virus-specific cytokine responses in 339 healthy children who had received two doses of live attenuated measles vaccine. Multivariate linear regression modeling analysis revealed suggestions of associations between the expression of DPA1*0201 (p=0.03) and DPA1*0202 (p=0.09) alleles and interleukin-2 (IL-2) cytokine production (global p-value 0.06). Importantly, cytokine production and DQB1 allele associations (global p-value 0.04) revealed that the alleles with the strongest association with IL-10 secretion were DQB1*0302 (p=0.02), DQB1*0303 (p=0.07) and DQB1*0502 (p=0.06). Measles-specific IL-10 secretion associations approached significance with DRB1 and DQA1 loci (both global p-values 0.08). Specifically, suggestive associations were found between DRB1*0701 (p=0.07), DRB1*1103 (p=0.06), DRB1*1302 (p=0.08), DRB1*1303 (p=0.06), DQA1*0101 (p=0.08), and DQA1*0201 (p=0.04) alleles and measles-induced IL-10 secretion. Further, suggestive association was observed between specific DQA1*0505 (p=0.002) alleles and measles-specific IL-12p40 secretion (global p-value 0.09) indicating that cytokine responses to measles antigens are predominantly influenced by HLA class II genes. We found no associations between any of the alleles of HLA A, B, and Cw loci and cytokine secretion. These novel findings suggest that HLA class II genes may influence the level of cytokine production in the adaptive immune responses to measles vaccine.  相似文献   

18.
The class II region of the human major histocompatibility complex (HLA) is made up of three major subregions designated DR, DQ, and DP. With the aim of gaining an insight into the evolution and stability of DR haplotypes, a total of 63 cosmid clones were isolated from the DR subregion (Gogo-DR) of a western lowland gorilla. All but one of these cosmid clones were found to fall into two clusters. The larger cluster, A, was defined by 41 overlapping cosmid clones and contained a DRB gene segment made up of exons 4 through 6 and four DRB genes, designated Gogo-DRB6, Gogo-DRB5*01, Gogo-DRB8, and Gogo-DRB3*01. The total length of this cluster was approximately 180 kb. The second cluster, B, encompassed a contiguous DNA stretch of approximately 145 kb and was composed of 21 overlapping cosmid clones. Cluster B contained three DRB genes, designated Gogo-DRB1*08, Gogo-DRB2, and Gogo-DRB3*02. One cosmid clone (WP1-9) containing a DRB pseudogene could not be linked to either cluster A or B. Neither the organization of cluster A nor that of cluster B was identical to that of known HLA-DR haplotypes. However, two gorilla DRB genes, Gogo-DRB6 and Gogo-DRB5*01, the human counterparts of which are linked in the HLA-DR2 haplotype, were found to be located next to each other in cluster A. The arrangement of the Gogo-DRB genes in cluster B, which is presumed to be the gorilla DR8 haplotype, was similar to that of HLA-DR3/DR5/DR6 haplotypes and to that of the presumed ancestral HLA-DR8 haplotype.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

20.
The memory T cell response is polyclonal, with the magnitude and specificity of the response controlled in part by the burst size of T cells expanded from effector/memory precursors. Sensitive assays using HLA class II multimers were used to detect low-frequency Ag-specific T cells directed against influenza viral Ags in subjects immunized with the influenza vaccine. Direct ex vivo tetramer staining of PBMC from five individuals identified frequencies of hemagglutinin (HA) 306-318 tetramer binding CD4(+) T cells in the peripheral blood ranging from 1 in 600 to 1 in 30,000 CD4(+) T cells. These frequencies were validated by counting CFSE(low), tetramer-positive T cells after in vitro expansion. Low frequency of T cells directed to other influenza epitopes, including DRA1*0101/DRB1*0401-restricted matrix protein 60-73, DRA1*0101/DRB1*0101-restricted matrix protein 18-29, DRA1*0101/DRB1*0701-restricted HA 232-244 and DRA1*0101/DRB1*0101-restricted nucleoprotein 206-217 were also determined. T cells which occurred at a frequency as low as 1 in 350,000 could be ascertained by in vitro expansion of precursors. Peripheral HA(306-318)-responsive T cells expanded 2- to 5-fold following influenza vaccination. Examination of phenotypic markers of the HA(306-318)-responsive T cells in the peripheral blood indicated that the majority were CD45RA(-), CD27(+), CD25(-), CD28(+), and CD62L(-), while T cell clones derived from this population were CD45RA(-), CD27(-), CD25(+), CD28(+), and CD62L(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号